
MatDeck GUI Designer

MatDeck contains graphical user interface elements of different types. A list of the implemented elements, ways to
create them and implement in MatDeck documents, descriptions of GUI function arguments and much more is included
in the MatDeck GUI User Manual. Beside these individual GUI elements, we have implemented the GUI Designer.

The image above is an example of the types of applications you can make graphical user interface using the GUI
designer. GUI Designer is a software development tool which is used to simplify the creation of widgets and GUI
applications. By arranging and placing GUI elements through the use of drag and dropping; creating, placing and editing
is made much easier.

https://labdeck.com/downloads/GUIUserManual.pdf

This is the what the actual GUI designer used for the form above looks like. As you can see the from itself includes no
code and the form above was created solely through the use of dragging and dropping GUI elements into the work area.

In MatDeck’s GUI Designer, the main work space acts as the main widget where all other GUI elements are placed. This
widget is the parent object for all other elements that we have placed on the form. Inserting any new container or
element on top of another object in the GUI designer makes the select object the parent for newly inserted object. Note
that there is no limit to how many iterations of nesting can be done.

To create a widget and use the GUI Designer in a MatDeck document, go to Programing tab and press the ‘Widgets’
button (Picture 1).

Picture 1: Widgets button

A new window will open which will contain a list of all the widgets that have been created in the current MatDeck
document (Picture 2). From this window you can create a new widget, edit or delete the existing one.

Picture 2: Document widgets editor

To create a new widget, simply, press ‘New’ and a new empty GUI designer tab will open. When doing so make sure that
you haven’t selected any widgets that may be present in the window. To edit or delete a pre-existing widget, select the
said widget first and then press on the suitable button at the bottom of the tab. Either you choose to create new widget
or to edit existing one, the GUI Designer will open. The default look of empty GUI Designer is shown on picture bellow.

Picture 3: GUI Designer

On the left side of the GUI Designer are the GUI elements; in the middle of Designer is working area of widget where GUI
elements can be placed. To place one of the elements just press preferred GUI element and select the place on widget
working area to place it.
For example, we will place one Text Box on the widget. On the right side of Designer, the properties of the selected
element are displayed and these properties can be modified from here (Picture 4). In the example below, we have also
edited the name of the widget to ‘Widget Example’. To do this, you just have to write your preferred name in the field
above the main working area.

Picture 4: GUI Element Property

Please note that to actually connect or interact between GUI elements, you have to add necessary code for the
interaction itself. To do so, edit the generated code in a MatDeck document by adding the necessary pieces of code.

If we open the Containers menu, from the bottom left part of the GUI Designer, a new list of GUI elements will appear.
These elements are called containers and can be placed on main widget area. They act as carriers for other GUI
elements.

Picture 5: Containers

To insert any of these containers on the main form uses the same method as inserting other GUI elements. First, select
the preferred container and then, select the place on the working area where you want to place it.

When a container or element is selected, it can be resized by moving the blue squares around it or it can be resized by
changing the Width and Height values from the Property table of the selected object.

Picture 6: Resizing of object

If you wish to preview your widget and check on your progress at any point during your work you can do so by pressing
the ‘Preview Widget’ in the bottom right corner. It will output a new interactive window where you can check and use
your widget.

When a Tab widget is used, we can use the context menu to rename the current tab or to insert a new one.

There is option to link an event function for selected GUI element. Event function list is empty on all newly created
Widgets; we have to define a new event function by using the Event Functions part of the Designer. To do so, input the
name of the new event function you wish to add in the empty field in the event function window and press ‘Add New’.
After creating a new event function, it will appear in the Event Function list for the selected GUI element (Picture 5).

Picture 7: Event Functions

The Event Functions container is a global container which contains all the created event functions for the Widget we are
currently creating/editing. In the field named ‘Event Function’ in the green tab above, you can select one of the defined
functions by choosing one of the options that appears in the drop down list when clicked.

The green window explained above which is used to edit certain aspects of GUI elements, primarily the event function,
can be unique to certain elements. Meaning, not all GUI elements will have the same options present and some
elements will have options only specific to that element and not present in other elements. Below, all examples of this
are explained.

- Button

When the Button GUI element is inserted into the working area, the green box above appears. The ‘Text’ field can be
used to change and set the visible label on the button. Additionally, you can choose the Event Function that will be used
on the Button’s event.

- Spin box

When a spin box GUI element is inserted, element specific settings that can be changed will appear. From here, the
Minimum and Maximum value of the spin box can be set by using the ‘Minimum’ and ‘Maximum’ fields respectively. The
step at which the spin box’s value increments by can be also set by using the ‘Step’ field. The starting value of the spin
box can be set by entering your chosen value in the ‘Value’ field. Lastly, if an event function has been, the event function
used can be changed by selecting an option on the drop down menu at the bottom.

- Radio button

When a Radio button GUI element is inserted, the settings above will appear. The visible label of the radio button can be
altered by writing in the ‘Text attribute’ field. By default, the label used is ‘Radio Button’. The ‘Value’ attribute can be
used to define the default value of the selected radio button (whether the radio button is checked or not). On

containers/elements that contains several radio buttons; only one of them can be checked at a time. Event Function will
occur when Radio Button is checked.

- List box

When a List box GUI element is inserted, the following options will appear. Using the ‘Value’ attribute, the default value
of the list box can be defined. Event Functions will occur when one of the list boxes containing rows is selected.

- Horizontal slider

When a Slider GUI element is inserted, the following options will appear. The range of values the slider can reach can be
set using the ‘Minimum’ and ‘Maximum’ fields respectively. The step of the slider which defines how much the slider
increments by is set using the ‘Step’ attribute and the default (starting) value of slider is set using the ‘Value’ attribute.
The ‘Orientation’ drop down menu is used to change the slider’s orientation. Only horizontal and vertical orientations
can be used. If set, Event Function is used when slider value is changed.

- Label

When Label GUI elements are inserted, they only have one customizable setting. Only the Label’s visible text can edited.
This is done by writing in your preferred text in the ‘Text’ field at the top.

 - Horizontal progress bar

When a Progress bar GUI element is inserted, the following attributes can be customized using the available settings.
Firstly, the range of allowed values the Progress bar can extend to can be set using the ‘Minimum’ and ‘Maximum’
attributes respectively. The default (starting) value of the Progress bar can be set by editing the ‘Value’ field. The
orientation of the Progress bar can be changed by selecting an option in the drop down menu of the ‘Orientation’
option. Only horizontal and vertical orientations can be used on the Progress bar.

- Image widget

When an Image GUI element is inserted, the picture used can be set by using the ‘Image’ field at the top. Event Function
will occur when image is selected.

- Instrument

When an Instrument GUI element is inserted, the only editable option present on the working panel is the Event
Function that will occur when the instrument’s value changes. Every instrument has a context menu from which you can
change the instrument in use and the properties of the chosen instrument.

Tables, 2D and 3D graphs don’t have any settings at all. All properties of those GUI elements can be customized by using
the settings present in their context menus.

Once you are finished working on your widget design, you can press the ‘Done’ button and the designer will generate
the code for the widget and copy it to your clipboard. If you have created a new widget and generated the code by
pressing ‘Done’ for the first time, the notification window (Picture 8) will open. Once ‘Done’ has been pressed for the
first time, Every time new code is generated it will be updated without showing this notification.

Picture 8: Notification Window

To place the generated code on a MatDeck document, we have to place the cursor on the preferred position and turn on
Code mode. We can turn this mode on from Programming tab using

button, or by using the Ctrl. + i key combination. When Code mode is on, paste the code from the clipboard on
document.

The generated code is copied to your clipboard as soon as you press ‘OK’. To paste the generated code onto a MatDeck
document, you must first open a new script file. Do this by opening the drop down list on the ‘new’ page button and
pressing on the ‘new script’ option. In the new script file, you can paste your generated code and use it as you wish.

Picture 9: Widget Code

For every Event function we have created on the GUI Designer, the function in the code will appear with an empty body
for the user to enter code for whatever they have planned.

Picture 10: Event Function In Code

At the end of code, a constructor for the created widget is added followed by the show() function. The purpose of these
two lines is to create the widget as a stand-alone application when the current document is evaluated.

Notice: The preferred order of creating/changing widget designs and generating or updating code originates from the
GUI Designer. If you change code directly in the MatDeck document and then, open and save these changes in the GUI
Designer afterwards, all changes that were made directly in the code will be lost.

Interacting with generated GUI code

The GUI designer generates code which is used to create the visual aspects of the GUI. This means the
generated code will output the GUI as it was designed by the users. The position of the GUI elements, their
titles and event functions will all be coded as designed in the GUI designer window. In short, the code created
by the GUI designer is for creating the individual GUI elements and their properties, any interactions or
changes need to be added by the user.

Functions and code that can be used on GUIs are all included and explained in another manual. However, in
this segment of the manual we will cover two important functions that are most commonly used. These
functions are also included in the example at the end.

Retrieving the value of a widget / widget_value()

To retrieved and store the value of a widget present in a GUI, the function widget_value() needs to be used. It
has only one argument, the name of the variable the widget is stored in or the name of the widget which is
used.

In the example above, the function retrieves the value of the widget stored in the variable “ExampleWidget”
and stores the value in the variable “A”.

Connecting widget values with other widgets/ set_widget_value()

To display the value of a widget on a separate widget, the function set_widget_value() needs to be used. It has
only two arguments, the widget where the value will be set and the value that will displayed on that widget
respectively.

In the example above, the first argument (widget where value will be applied) is a circular instrument gauge. The second
argument is the value of the vertical slider present in the same GUI application. The value of the slider is retrieved using
the function widget_value(). Once the function has been used, the value of the instrument will be that of the slider.

When altering or interacting with the value of a GUI element, it should be done in the event function used on it. In this
case, when interacting with the value of the slider, the function set_widget_value() is used in the slider’s event function.

Below is an example of this.

Other custom GUI functions

The functions above are used to manipulate GUI element’s values and event functions. Other GUI functions
also exist that can be used to interact with GUI elements and their properties. The following functions are all
examples of this.

To use these functions to edit a GUI element’s properties, make sure to execute the functions within the GUI
code. In other words, make sure to use these functions within the function defined at the start of the code for
them to have effect.

Engaging GUIs when they are used

When using these functinos in the event function segment of the code they will apply when the event
function’s widget is used. For example, if set_widget_text() is used in the event function of a button widget,
the button’s text will only change when pressed. In other words, the functions present in a event function will
only be triggered when the event function is used.

Widget Text functions

The following functions are used to manipulate the text present on a GUI element.

set_widget_text() – this function can be used to set the text present on a GUI element. The function has only
two arguments, the widget being used and the string text respectively.

widget_text() – when used, it will retrieve the text present on a GUI element. Only one argument is used for
the function, the name of the variable or widget that is used. In the example below, the text retrieved is
stored in a varaiable. The function can be used outside of variables and nested in other functions as well.

Widget Position functions

The following functions are used to manipulate the position of GUI elements in the GUI application.

set_pos() – the position of GUI elements can be changed via the GUI designer and custom GUI functions. GUI
functions may be preferred for positioning as they are more precise. set_pos() can be used to position GUI
elements. The 3 arguments are the widget used, position regarding X axis and positioning regarding Y axis
respectively.

pos_x() – used to retrieve the position of the widget regarding the X axis. The function only has one argument,
the widget or variable used.

pos_y() – used to retrieve the position of the widget regarding the Y axis. The function only has one argument,
the widget or variable used.

Widget Sizing functions

The following functions are used to manipulate the size of GUI elements.

set_size – the size of GUI elements can be changed via the GUI designer and custom GUI functions. The
custom GUI function has 3 arguments. The arguments used are the widget/variable used, the width of the
widget and height of the widget respectively.

width() – this function can be used to retrieve the horizontal width of a selected widget. Only one argument is
needed; the variable or widget used.

height() – this function can be used to retrieve the vertical height of a selected widget. Only one argument is
needed; the variable or widget used.

Please note: when using these functinos in the event function segment of the code they will apply when the
event function’s widget is used. For example, if set_widget_text() is used in the event function of a button
widget, the button’s text will only change when pressed. In other words, the functions present in a event
function will only be triggered when the event function is used.

Executing and Outputting GUIs

Once GUI designs are completed, the generated code is copied to the clipboard. This generated code can be
used in different formats which include: MatDeck documents, Python script documents, and MatDeck script
documents.

GUIs can be outputted using the following methods:

• Evaluation of generated code
• Embedding the widget

Evaluation of generated code

GUI applications can be executed by evaluating the generated code in MatDeck document. By default, the GUI
application will appear as a standalone window separate to the MatDeck document in which it is evaluated. To
execute generated code in MatDeck, first, the code must be placed in the appropriate format. This means the
generated code can be copied to a programming block, MatDeck script document and Python script
document.

Once the code is placed in the appropriate location, press the ‘Evaluate’ icon to evaluate the current code.
Evaluate is located in the ‘Programming’ toolbar.

Embedding the widget

For users that prefer to use their designed GUI in the MatDeck document instead of a standalone window, it
can also be embedded. Embedded GUI need to be embedded in canvases only.

To embed your GUI, the function embed_widget() needs to be used. It has only one argument, the name of the variable
in which the widget is stored or the name of the widget which is to be embedded. The widget is used in canvases. In the
example below, the generated code was placed in Text/Code block in a standard MatDeck document.

In the example above, the argument used for designed GUI is a.w1. When GUIs are being embedded, the GUIs class and
the variable in which the widget is stored both need to be used. The GUI’s class is written first followed by the widget’s
variable. The two variables are separated by a single full stop.

GUI Designer Instrument Example

As mentioned in the manual earlier, to open the GUI designer we press on ‘Widget’ under the ‘Programming’ toolbar.
Once the new window opens we will make sure to not to select any preexisting widgets in the file and press ‘New’ to
open a new empty GUI designer window. This to make sure we don’t delete or replace any existing widgets with our
new one.

The window above will open. In this example, we will connect two GUI elements together and interact between them.
For this one, we will use an ‘Instrument Widget’ and a ‘Vertical Slider’ located on the left-hand side ‘Widgets’ list. By
pressing on the icons of each and then pressing on the main parent widget workspace, you will be able to place the GUI
elements as so:

The name of variable in which the GUI’s class is
stored. This variable is normally located close
to the end of the generated code.

The second variable used is the variable which
stores the actual widget. The widget is normally
initiated using the function widget().

Once you have arranged the necessary GUI elements like the image above, we will move on to adding a new event
function for the vertical slider. We will do this by writing in the ‘Add New’ field of the event functions window and
pressing ‘Add New’ to add this new event function to the widget. To add this specific event function to the slider, it has
to be selected from the drop down list that appears when ‘Event Function’ is pressed. It will appear as below:

The reason we do this is so that the function/capabilities of the slider are now named and can be interacted with by
referring to its event function. In short, its event function acts as a way for us to connect that slider to other elements on
the parent-widget work area.

Now that you have the necessary GUI elements placed and edited on the parent widget, we can press ‘Done’ and move
onto adding the generated code to a new MatDeck document.

Like the manual we are now going to open a new MatDeck script file where we will our generated code will be pasted in
once we are finished and pressed ‘Done'. Your generated code should appear as so:

The collapsed brackets on line 16 contain all necessary Meta data such as the size, positioning and the name of event
functions associated with our widgets. So far, we have added the necessary GUI elements and added an event function
for the slider. For our final step we simply have to use the event function we created earlier to connect the Vertical
Slider to the Instrument Widget. On line 33 our event function is located.

As you can see, the brackets are empty as we haven’t used the slider’s function or data for anything yet. To connect the
slider’s value/data to the instrument we will use the function set_widget_value(,). Its first argument is the name of the
widget we wish to use the value on and its second argument is the value we wish to use. As we are using the value
generated by the slider we have to use the function widget_value() in the second argument so that we can use the
slider’s value. Its argument is the name of the widget or GUI element we wish to use. The new line of code should look
so using the arguments mentioned above.

Now the event function of the slider sets the value of the instrument widget to the value of the slider. This means
moving the slider will change the value of the instrument widget. Press the ‘Evaluate’ button on the programming tab to
execute your newly created widget. It will appear and interact as below:

Note: Be careful to not forget to name your GUI elements and widgets with appropriate names while working with the
GUI designer. This will both make your code easier for others to interpret and easier for you to read and make necessary
changes including mistakes.

	MatDeck GUI Designer
	Interacting with generated GUI code
	Executing and Outputting GUIs
	GUI Designer Instrument Example

