MatDeck Programing

1. General

MatDeck allows the integration of text editing, script language, the ability to generate GUIs, flowcharts,
virtual instrumentation, data visualization, programing, and parallel processing on multiple computers all to
be comprehensively done within its documents. Expressing programming ideas in MatDeck takes usually
less lines of code compared to others. The main objectives of this manual are: give general tips and
suggestions about how to program in MatDeck, teach enough MatDeck script that it is easy to do most
common data manipulations, analyzing, and comparing, as well as to a provide firm knowledge foundation
so that learning more advanced MatDeck techniques is possible.

2. Editing code

There are three ways to edit script code and programming in MatDeck: using Math objects within a canvas,
writing code in text mode, and Script Editor. The first two options are used within a regular MatDeck
document and the last, Script Editor is a dedicated code editing document.

For short and simple mathematical and programing calculations in a MatDeck document you should utilize
the Canvas for Math objects (see Insert and Math tab).

edit_code()
{
print("HeIIo world")

}

Make programm edit_ code() Callfunction

For more complex programing within a MatDeck document, MatDeck provides the editing code in text
mode. It iss enabled by clicking Text/Code icon in the Math Tab, or using ctrl + i. The code lines are
numbered as seen here:

// Edit code here
varalable := 5

In order to get back to text editing you must first click the Text/Code icon in the Math Tab, or use ctrl + i.

For more complex programing MatDeck provides the alternate option, Script Editor. The document is
generated by using the File-New and then using the drop down tool bar next to it select the Script option.
The Script Editor is dedicated for programming and it can contain only code as text as in the example
above.

MatDeck documents are evaluated every time after a = or a new line key is pressed in the canvas and you
will get results immediately after. Also you can click on the document, use ctrl + e or the Evaluate button to
explicitly evaluate and execute codes within the document at any point in time.

MatDeck documents and scripts can be compiled into executable applications. Behavior of such
applications will be the same as in the source script but it will run much faster. For compiling processes you
should use the Build And Run button from the tool bar. You may be asked to set development kit if it is not
present.

3. Syntax

MatDeck Script is a case-sensitive language. This means that the language keywords, variables, function
names, and any other identifiers must always be typed with a consistent capitalization of letters.
Also keep in mind that script is executed from the left to the right and from the top to the bottom.

4. Data types

One of the most fundamental characteristics of a programming language is the set of data types it
supports. These are the types of values that can be represented and manipulated in a programming
language.

MatDeck Script allows you to work with these data types:

boolean
integer

double
complex
symbolic value
string
symbolic function
unit

vector

matrix

image
expression
equation
interval

object

MatDeck Script also defines trivial data type undefined (void).

Composite data types like vector, matrix, equation and interval are composed of primitive data types so in
canvas mode you should enter its keyword before you can enter its data.

type(true) ="boolean type(a) ="symbolic value" tvoe 12 = "matrix"
type(3) ="integer" yP 3 4
type("all) - "Stringll L
type(3.5) ="double"
type(sin(x)) ="symbolic function" _3
type(4 + 7[) = "Comp|eX" type 8 = "VeCtOF"
type(a + b) ="expression" L
type (void) = "undefined" type(m) ="symbolic value” type((3,5]) ="interval"

type(]]) ="undefined" type(x==)= "equation”

5. Variables

Like many other programming languages, MatDeck Script has variables. Variables can be thought of as
named containers. You can place data into these containers and then refer to the data simply by naming the
container.

Variable declaration and initialization

Before you use a variable you must declare it. Unlike many other languages, you don't have to tell MatDeck
during variable declaration what type of value the variable will hold. Variable can hold a value of any data
type. Variable will get its initial value type during variable declaration and it can be changed during the
execution of a program.

Variables are declared with the := operator as follows.

a:=7

name :="Your name"
type(a) ="integer"
type(name) ="string"

Storing a value in a variable is called variable initialization. You should do variable initialization at the
time of variable creation. Also you can change variable value later with variable assignment operator =.

name ="My name"
name ="My name" 4-/—(when entered variable assignment operator v=looks like = but bold)
name ="My name"

You can re-declare same variable again but it is good practice to use variable assignment operator like
in the example above.

Variable scope

The scope of a variable is the region of your code or document in which it is defined. MatDeck Script
variables have two scopes:

e Global scope - A global variable has global scope which means it can be defined anywhere in your
code or document.

® |ocal scope — A local variable will be visible only within a function where it is defined. Function
arguments are always local to that function.

Within the body of a function, a local variable takes precedence over a global variable with the same name.
If you declare a local variable or function argument with the same name as a global variable, you effectively
hide the global variable. Take a look into the following example.

var:="global variable"

()
{

| var:="local variable"
2 return(var)

}

fn() ="local variable"

Variable names
While naming your variables in MatDeck Script, keep the following rules in mind:

® You should not use any of the MatDeck Script reserved keywords as a variable name.
e Variable names should not start with a numeral (0-9). They must begin with a letter.

e Variable names are case-sensitive. For example, Name and name are two different
variables.

6. Operators

An operator is a symbol that tells the MatDeck to perform specific mathematical or
logical operation. MatDeck Script operators can also perform operations between
different data types if it is possible.

MatDeck Script supports the following types of operators:

Arithmetic Operators

Relational Operators

Logical Operators

Bitwise Operators

Assignment Operator

Compound Assignment Operators
Subscript Operator

Arithmetic Operators

Following arithmetic operators are supported by MatDeck Script:

+ Adds two operands

- Subtract second operant from the first
* Multiplies both operands

| Divides numerator by de-numerator
% Division reminder

I? :l 5Il= 10" n n 1 2 — 3 4
I"+"am" ="lam 34+2_56
"Cat"-"t" =undefined

Relational Operators

Following relational operators are supported by MatDeck Script:

e == Checks if the values of two operands are equal or not, if yes then condition becomes true.

e I= Checks if the values of two operands are equal or not, if values are not equal then condition
becomes true.

e > Checks if the value of left operand is greater than the value of right operand, if yes then condition
becomes true.

e < Checks if the value of left operand is less than the value of right operand, if yes then condition
becomes true.

e >= Checks if the value of left operand is greater than or equal to the value of right operand, if yes then
condition becomes true.

e <= Checks if the value of left operand is less than or equal to the value of right operand, if yes then
condition becomes true.

x>y =false 7>5 =true 11 11 11 00
== = > =false
x<y =false ——q _ 11 11 e 1 00
true==1 =true

Logical Operators

Following logical operators are supported by MatDeck Script:

e && Called Logical AND operator. If both the operands are non-zero, then condition becomes true.
e || Called Logical OR Operator. If any of the two operands is non-zero, then condition becomes true.

e I Called Logical NOT Operator. Use to reverses the logical state of its operand. If a condition is true,
then Logical NOT operator will make false.

Bitwise Operators

Following bitwise operators are supported by MatDeck Script:

e & Bitwise AND

e A Bitwise HOR

| Bitwise OR

<< Bitwise Shift Left
>> Bitwise Shift Right
~ Bitwise NOT

Assignment Operator

= will assign value to the existing variable.

Compound Assignment Operators

e +=Add AND assignment operator, It adds right operand to the left operand and assign the result to
left operand.

e = Subtract AND assignment operator, It subtracts right operand from the left operand and assign the
result to left operand.

e *= Multiply AND assignment operator, It multiplies right operand with the left operand and assign the
result to left operand.

e /= Divide AND assignment operator, It divides left operand with the right operand and assign the
result to left operand.

® %= Modulus assignment

e &= Bitwise AND assignment

e A= Bijtwise HOR assignment

e |=Bitwise OR assignment

e <<= Bitwise shift left assignment
e >>=Bitwise shift right assignment

Subscript Operator

[]1gives access to the vector or matrix element

|12

a.= 3 4 5 1 2
alll=]3 4

afo] =1

alo]=5
5| |52
all=]3 4

alo] =5
52
@73 4
Operators Precedence

Operator precedence determines the grouping of terms in an expression. This affects how an expression is
evaluated. Certain operators have higher precedence than others; for example, the multiplication operator
has higher precedence than the addition operator.

Operators with the highest precedence appear at the top of the list, those with the lowest appear at the
bottom. Within an expression, higher precedence operators will be evaluated first.

e []

e !|~*& (lasttwo are dereference and address-of)
e *I%

) + -

<<>>

<><=>=

&

° A

° |

e &&

e |l

o +==*=[=%=<<=>>= &= A= |=

7. Control statements if, else if, else

While writing a program, there may be a situation when you need to adopt one out of a given set of paths. In
such cases, you need to use conditional statements that allow your program to make correct decisions and
perform right actions.

MatDeck Script supports conditional statements which are used to perform different actions based on
different conditions. These statements are:

e if statement is the fundamental control statement that allows MatDeck Script to make decisions and
execute statements conditionally.

e else if (can be used only after if)
e else (can be used only after if or else if)

condition(arg)

{
if(arg==0) condition(1) ="arg is 1"
{

return("arg is 0") (this statement is executed)
} /

else If(arg ==1)
{

return("arg is 1")
b

else

{
return("arg is not 0 and not 1")

}

8. Loops

There may be a situation, when you need to execute a block of code several number of times. In general,
statements are executed sequentially, the first statement is executed first, followed by the second, and so

on.
MatDeck Script provides the following type of loops to handle looping requirements:

e while loop Repeats a statement or group of statements while a given condition is true. It tests the
condition before executing the loop body.

e for loop Execute a sequence of statements multiple times and abbreviates the code that manages
the loop variable.

Statement body is executed until this condition is true.
Condition is tested every time before statement body is
executed.
Control variable. It is
defined and initiated once.
I{oop1() loop2() Control statement. ltis
A o=10 { executed every time after
a h_I (a>0) 1 / statement body.
\éVIea>O for(a:=0 ,a<10 ,a+=1)
2 {
a-=1 2
1
by ;I
. }
by

9. Loop control

There may be a situation when you need to come out of a loop without reaching its bottom. There may also
be a situation when you want to skip a part of your code block and start the next iteration of the loop.

To handle all such situations, MatDeck Script provides break and continue statements. These statements
are used to immediately come out of any loop or to start the next iteration of any loop respectively.

® break statement is used to exit a loop early, breaking out of the enclosing curly braces.

e continue statement starts the next iteration of the loop and skip the remaining code block. When
a continue statement is encountered, the program flow moves to the loop check expression
immediately and if the condition remains true, then it starts the next iteration, otherwise the control
comes out of the loop.

// Sum of numbers from 10 to 20
loopcontol()

a =0
for(n := 0; n < 30; n +=1)
{

if(n < 10)

{

continue

}

a +=n

if(n >= 20)

{

break

}
}

return(a)

}

10. Functions

A function is a group of reusable code which can be called anywhere in your program. This eliminates the
need of writing the same code again and again. It helps programmers in writing modular codes. Functions
allow a programmer to divide a big program into a number of small and manageable functions.

Also control and loop statements are available only in functions.

Defining a function
Before we use a function, we need to define it. To define function in new line enter function name and then

closed brackets (). After that press enter key and in new line enter { bracket and press enter again. Editor
will add closing } bracket. Stace between {} brackets is called function body.

myfn()
{

}

We can define a function with function arguments. Arguments are values passed to the function body.

myFirstFunction(argl, arg2)

{

return(argl + arg2)

}

Calling a function

To invoke a function somewhere later in the script, you would simply need to write the name of that function
as shown in the following code.

s:= myFirstFunction(S , 7)

myFirstFunction(Z , 3) =5
s =12

Return statement

A MatDeck Script function can have an optional return statement. This is required if you want to return a
value from a function. Functions without return statement will return void (undefined).

11. Classes

Classes and are often called user-defined types. A class is used to specify the form of an object and it
combines data representation and methods for manipulating that data into one neat package. The data
and functions within a class are called members of the class.

Class definition

When you define a class, you define a blueprint for a data type. This doesn't actually define any data, but it
does define what the class name means, that is, what an object of the class will consist of and what
operations can be performed on such an object.

A class definition starts with the keyword class followed by the class name; and the class body, enclosed
by a pair of curly braces.

Define a object

A class provides the blueprints for objects, so basically an object is created from a class. We declare
objects of a class with exactly the same sort of declaration that we declare variables of basic types. In that
process class constructor (main function with the same name as class) is executed.

The public data members of objects of a class can be accessed using the direct member access operator

()

class rectangle
{
wid := ©
hei := 0
rectangle(w, h)
{
wid = w
hei = h
b
surface()
' return(wid * hei)
}
}

r1:= rectangle(3 , 4)
r2:= rectangle(z , 2)
r1 .surface() =12
r2.surface() =4

r1.wid =3
r1.hei =4
r2.wid =2

r2.hei =2

Special programing statements and functions
Plug-in name statement

Plug-in naming. For more see plug-in user manual.

' plugin_name("my plugin")

Console input and output

All MatDeck scripts can be compiled into executable files. You can use the following functions to print to the
console and get user input from the console.

pri nt(some text") (console input)

prlnt(to string(a) c:=getc("enter text and prees enter")

In the document or script getc() will return its type argument as return value and print() will do nothing.

Programing examples

e Minimum and maximum of vector (.mdd), (.pdf)
e Recursion (.mdd), (.pdf)
¢ Newton - Raphson method (.mdd), (.pdf)
e Secant method (.mdd), (.pdf)
* Class (.mdd), (.pdf)

PluginUserManual.pdf
https://labdeck.com/examples/minMaxProgramingExample.mdd
https://labdeck.com/examples/minMaxProgramingExample.pdf
https://labdeck.com/examples/Recursion.mdd
https://labdeck.com/examples/Recursion.pdf
https://labdeck.com/examples/newton.mdd
https://labdeck.com/examples/newton.pdf
https://labdeck.com/examples/secant.mdd
https://labdeck.com/examples/secant.pdf
https://labdeck.com/examples/Class.mdd
https://labdeck.com/examples/Class.pdf

