
Adaptive Filter Receiver
The term, adaptive filter, means that the characteristics of a filter are changing in an automated fashion
to obtain the best possible signal quality. In this example, we show how MatDeck can be used to
adaptively receive the noisy signal, u(n) ,through the TCP/IP channel. The TCP/IP channel
communication mimics the data acquisition from a specific piece of hardware. The second, TCP/IP,
channel is used to transmit the desired signal, d(n) , which is used to adaptively remove the noise direct
from the noisy signal.

In an adaptive Wiener filter the error signal is fed back to the filter weights to adjust them using the
steepest-descent algorithm. In practical implementation estimating the gradient from the available data
using the least-mean-square (LMS) algorithm is necessary. The parameters of the LMS algorithm are:
filter length, step size and the receiver buffer size.

MatDeck simulation

A simple MatDeck simulation is constructed by using two MatDeck documents. Document,
LMSsender.mdd generates a single sinusoid at a normalized frequency of f0=0.2 to which the additive
white Gaussian noise is added. The relation between the amplitude of the sinusoid and the standard
deviation of the noise is defined by the Signal and Noise Ratio (SNR). LMSsender.mdd creates two
TCP/IP channels, the first for sending the noisy signal, and the second for sending the pure sinusoid as
the desired signal. The simulation is run using 1000 samples per second with SNR equal to 10dB.

In this document, adaptive_receiver.mdd, we connect to two channels created by LMSsender.mdd.
Parameters for LMS algorithm are defined as: step size at mu=0.001, filter length is 11, and the buffer
size is 1000 to collect exactly one second of the signal. Further, MatDeck's function ,lmsreceive() , is
also used. The function, lmsreceive(), has two additional arguments in channel objects which are used
to communicate with the sender.

All necessary variables are given in the next canvas. The code of the function: lmsreceive() are written
in MatDeck script language and is shown in the segment below.

TCP/IP channel used to send desired signal d(n) g2 := channel connect c d "127.0.01" , 1806

 = channels table c d undefined

 Y_out := 0 ee_out := 0 Y_graph := 0 0 time := 0

Step size for LMS algorithm
 mu := 0.001

Wiener filter length
 length := 11

TCP/IP channel used to send noisy signal u(n) g1 := channel connect c d "127.0.0.1" , 1805

LMS function with data acquisition lmsreceive c d mu , length , 1000 , g1 , g2

 EE_graph := 0 0

Required variables

www.labdeck.com

 lmsreceive c d mu_a , length_a , buffer_size , ch1 , ch2

{

}

 buffer := matrix create c d length_a , 1 , 0

 ww := matrix create c d length_a , 1 , 0

 y_out := matrix create c d buffer_size , 1 , 0

 ee := matrix create c d buffer_size , 1 , 0

 ct := 0

 Temp :=
T

 c d xnodesc d 0 buffer_size , buffer_size - 2

 while c d true
{

}

 d_in := channel read c d ch1 , true

 u_in := channel read c d ch2 , false

 for c d i := 0 , i < buffer_size , i += 1
{

}

 for c d j := length_a - 1 , j > 0 , j -= 1
{

}
 [] buffer j = [] buffer j - 11

 [] buffer 0 = [] u_in i

 [] y_out i = mat transpose c d ww buffer

 [] ee i = [] d_in i - [] y_out i

 Temp1 := mu_a [] ee i buffer
 ww += Temp1

1

2

3

4
5
6

 Y_out = join mat rows c d Y_out , y_out

 ee_out = join mat rows c d ee_out , ee

 time = join mat rows c d time , ct buffer_size + Temp

 ct += 1

 Y_graph = join mat cols c d time , Y_out

 EE_graph = join mat colsc d time , ee_out
 2

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

Results
MatDeck's function, lmsreceive(), takes a noisy signal, the desired signal from the TCP/IP channels,
together with Wiener filter length and step size for LMS algorithm as an input. The function then returns
the filtered signal, adaptive filter coefficients, and the error signal. In the next segment, we give the
graph of the squared error. From the graph of the squared error, we can see that the adaptive filter

minimizes the error in a steepest descent sense as expected.

