
Advantech - AI in Buffered Mode in Real
Time with Infinite Loop - Data Processing
In this example, we illustrate the use of AI for Advantech devices in buffered mode. The best way to set
up the buffered mode is through the use of an Advantech GUI. However, users should be aware that
parameters set in the GUI for buffered mode are stored in the MatDeck document and not the device.
This is why we have to export the device handle from the form for further use.

 at := atconfig_formc d 0 , "FormAI2" , "USB-4704,BID#0"

www.labdeck.com

In this example, we use AI in buffered mode, and therefore we only use the aib handle (AI in buffered
mode).

 aib := atconfig_form_device_handle
c d at , "aib"

 atconfig_form_configure
c d at

We use the graph to plot row data read from AI0, and filtered data after the Moving Average filter.
Therefore, we define the graph, and the global vector to store filtered data.

graphWidget := graph2d(0, 0)
graphWidget2 := graph2d(0, 0)

1
2

 graph1 := matrix_create a b 2 , 2 , 0 graph2 := matrix_create a b 2 , 2 , 0

The Advantech device is used for AI in buffered mode. This operation can be divided into four
steps. The first step is to define the device that will be used. As explained above, this is done
by exporting the appropriate handle from the form.

// Step 1: Open AI device in buffered mode.
AIhandle := aib

3
4

During the next phase, Step 2, all necessary parameters are set: the index of the starting AI channel, the
total number of AI channels (channelCount), the length of the buffer, and the buffered mode indicator.

// Step 2: Set necessary parameters.
startChannel := 0
channelCount := atdevice_ai_logical_channels(AIhandle)
sectionLength := 256

5
6
7
8

Step 3 is the data acquisition phase, which is why the function, atdevice_ai_read_multi() is used. The

function is used in a infinite loop. The execution of the document should be stopped using the Stop
option from the Programming tab.

//Step 3: GetData
print("Polling finite acquisition is in progress.\n")
scaledData := vector_create(sectionLength * channelCount, false, 0)
oneWave := size(scaledData) / channelCount
y_axis := vector_create(oneWave, false, 0)
y_axis1 := vector_create(oneWave, false, 0)
x_axis1 := vector_create(oneWave, false, 0)
counter := 0
tmr := timer_create(100)
on_event(tmr, fn())

while(true)
{
scaledData = atdevice_ai_read_multi(AIhandle, startChannel,

channelCount)
for(n := 0; n < oneWave; n += 1)

 y_axis[n] = scaledData[n * channelCount]
x_axis := vector_create(oneWave, false, x + counter * sectionLength)
x_axis1 = x_axis
counter += 1
graph1 = join_mat_cols(x_axis, y_axis *1000000)
set_widget_value(graphWidget,graph1)

}

fn()
{
//data processing
y_axis1 = movavg(y_axis, 7)
 graph2 = join_mat_cols(x_axis1, y_axis1 *1000000)
 set_widget_value(graphWidget2,graph2)

}

9
10
11
12
13
14
15
16
17
18
19
20
21

22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

The final segment, Step 4, is to close the device, which is necessary in order to release any allocated
resources.

// Step 4 : Close device and release any allocated resource.
atdevice_close(AIhandle)

39
40

