Cholesky decomposition using OpenCL

In this example we will create a random 5×5 matrix using uniform distribution and calculate its Cholesky decomposition matrix. The calculation will be done by using a GPU card and OpenCL with a group of MatDeck functions that incorporate ArrayFire functionalities.

First, we will set the environment for the GPU to be used in calculations. Using the function, afp_supported_backends, a list of all supported backends that can be used for calculations will be created. In our case, calculations can be made on the CPU or using OpenCL framework.
afp_supported_backends ()$=\left[\begin{array}{c}\text { "cpu" } \\ \text { "opencl" } \\ \text { "cuda" }\end{array}\right]$
The default environment for calculations is CPU, we can change the current environment with the function, afp_set_backend, and check which environment is currently in use with the afp_backend function.

$$
\begin{aligned}
& \text { afp_set_backend }(\text { "opencl" })=\text { true } \\
& \text { afp_backend }()=\text { "opencl" }
\end{aligned}
$$

In each environment, there can be several devices which support calculations within it. To check the number of devices which support calculations in the current environment we use afp_get_device_count, and use the functions afp_get_device and afp_set_device to check/change the current device.

```
afp_get_device_count( ) = 3
afp_get_device( ) = 0
afp_set_device(1) = true
```

To display information about currently selected device use the function, afp_device_info
\square
Finally, we have set OpenCL as a calculation backend and set the device with number 1 - integrated Intel graphic card as a device on which we will do all calculations.

Let's create a uniformly random 5×5 matrix with real values.

$$
\text { A:=afp_randu(} 5,5, \text { "real" })
$$

We can print variable A to check that the input matrix is generated.

$$
A=\left[\begin{array}{ccccc}
0.601 & 0.55 & 0.158 & 0.364 & 0.675 \\
0.028 & 0.286 & 0.371 & 0.416 & 0.611 \\
0.981 & 0.341 & 0.354 & 0.581 & 0.523 \\
0.213 & 0.751 & 0.645 & 0.896 & 0.557 \\
0.065 & 0.411 & 0.967 & 0.371 & 0.79
\end{array}\right]
$$

Now, we can do Cholesky decomposition calculations on matrixA and place resulting the vector in variable B. The second argument determines if we want to display the upper or lower triangular matrix.

$$
B:=\text { afp_cholesky }(A, \text { true })
$$

$$
B=\left[\begin{array}{ccccc}
0.775 & 0.709 & 0.204 & 0.469 & 0.871 \\
0 & -0.216 & 0.371 & 0.416 & 0.611 \\
0 & 0 & 0.354 & 0.581 & 0.523 \\
0 & 0 & 0 & 0.896 & 0.557 \\
0 & 0 & 0 & 0 & 0.79
\end{array}\right]
$$

If we want to display the lower triangular matrix as our resulting matrix, we will use false as the second argument
afp_cholesky $(\mathrm{A}$, false $)=\left[\begin{array}{ccccc}0.775 & 0 & 0 & 0 & 0 \\ 0.036 & 0.534 & 0 & 0 & 0 \\ 1.265 & 0.554 & -1.552 & 0 & 0 \\ 0.274 & 1.388 & 0.645 & 0.896 & 0 \\ 0.084 & 0.763 & 0.967 & 0.371 & 0.79\end{array}\right]$

