
Benchmark FFT using GPU and OpenCL
In this example we will create a random NxN matrix using uniform distribution and find the time needed to
calculate a 2D FFT of that matrix. The calculation will be done using GPU card and OpenCL with a group of
MatDeck functions that incorporate ArrayFire functionalities.

First, we will set the environment to use the GPU for calculations. Using the function,
afp_supported_backends, a list of all supported backends that can be used for calculations will be
produced. In our case, calculations can be made on the CPU, using OpenCL or CUDA framework.

 = afp_supported_backends c d

 "cpu"
 "opencl"
 "cuda"

Default environment for calculations is the CPU, we can change the current environment with the function,
afp_set_backend, and check which environment is currently in use with the afp_backend function.

 = afp_set_backend c d "opencl" true

 = afp_backend c d "opencl"

In each environment, there can be several devices which support calculations within it. To check the number
of devices which supports calculations in the current environment, use the function, afp_get_device_count,
and the functions afp_get_device and afp_set_device to check/change current device.

 = afp_get_device_count c d 3

 = afp_get_device c d 1

 = afp_set_device c d 1 true

To display information about currently selected devices, use the function afp_device_info

 = afp_device_info c d

 "Intel(R)_HD_Graphics_620"
 "OpenCL"

 "Intel(R) OpenCL"
 "2.1"

Finally, we have set the OpenCL as a calculation backend and set the device with number 1 - integrated
Intel graphic card as a device on which we will do all calculations.

Six iterations will be done to create a uniformly random NxN matrix with real values, calculate the 2D FFT
calculation time and Gigaflops benchmark in each iteration. Each iteration will have a different input matrix
size and the summary of the calculation will be displayed in the console window.

www.labdeck.com

In the following code, we will create a function bench() that will do all the calculations that we have
described.

bench()
{
print("Benchmar N x N 2D FFT:\n")
for(M := 7; M <= 12; M += 1)
{
N := 1 << M
print(to_string(N) + " x " + to_string(N) + "input matrix size")
A := afp_randu(N, N, "real")
a := timenow()
afp_fft2(A, 1, N, N)
b := timenow()
time := b - a
gflops := 10 * N * N * M / (time * 1000000000)
print(" - Time: " + to_string(time))
print(" - Gflops: " + to_string(gflops) + "\n")

}
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

Now, when the benchmark function is ready, all we have to do is to call the bench() function and analyze the
printed console results.

bench()18

