LU decomposition using CUDA

In this example we will create a random 4×5 matrix using uniform distribution and calculate its LU decomposition matrix. The calculation will be achieved using the Nvidia GPU card and CUDA with a group of MatDeck functions that incorporate ArrayFire functionalities.

First, we will set the environment to use the GPU for calculations. Using the function, afp_supported_backends, a list of all supported backends that can be used for calculations will be produced. In our case, calculations can be made on the CPU, using OpenCL or CUDA framework.
afp_supported_backends ()$=\left[\begin{array}{c}\text { "cpu" } \\ \text { "opencl" } \\ \text { "cuda" }\end{array}\right]$
Default environment for calculations is the CPU. We can change the current environment with the function, afp_set_backend, and check which environment is currently in use with the afp_backend function.

$$
\begin{aligned}
& \text { afp_set_backend }(\text { "cuda" })=\text { true } \\
& \text { afp_backend }()=\text { "cuda" }
\end{aligned}
$$

In each environment, there can be several devices which support calculations within it. To check number of devices which supports calculations in the current environment, use the function, afp_get_device_count, and the functions afp_get_device and afp_set_device to check/change current device.

$$
\begin{aligned}
& \text { afp_get_device_count }()=1 \\
& \text { afp_get_device }()=0 \\
& \text { afp_set_device }(0)=\text { true }
\end{aligned}
$$

To display information about currently selected device, use the function afp_device_info
\square
Finally, we have set CUDA as a calculation backend and set the device with number 0 - Nvidia GeForce graphic card as a device on which we will do all calculations.

Let's create a uniformly random 4×5 matrix with real values.
A:=afp_randu(4,5, "real")

We can print variable A to check that the input matrix is generated.

$$
A=\left[\begin{array}{ccccc}
0.918 & 0.362 & 0.148 & 0.829 & 0.614 \\
0.711 & 0.481 & 0.061 & 0.198 & 0.736 \\
0.813 & 0.140 & 0.951 & 0.036 & 0.839 \\
0.13 & 0.218 & 0.468 & 0.312 & 0.252
\end{array}\right]
$$

Now, we can do LU decomposition calculations on matrixA and place the resulting vector in variable B.
Resulting vector contains lower triangle matrix L, upper triangle matrix U and pivot vector.

$$
\begin{aligned}
& B:=\operatorname{afp} _\operatorname{lu}(A) \\
& \left.B=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0.774 & 1 & 0 & 0 \\
0.885 & -0.899 & 1 & 0 \\
0.141 & 0.833 & 0.639 & 1
\end{array}\right]\left[\begin{array}{ccccc}
0.918 & 0.362 & 0.148 & 0.829 & 0.614 \\
0 & 0.200 & -0.054 & -0.444 & 0.260 \\
0 & 0 & 0.771 & -1.096 & 0.529 \\
0 & 0 & 0 & 1.264 & -0.39
\end{array}\right] \ldots \ldots\right]
\end{aligned}
$$

There are separate functions for every member of the resulting vector.
Function, afp_lu_low will, calculate the lower triangle matrix L

$$
\text { afp_lu_low }(A)=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0.774 & 1 & 0 & 0 \\
0.885 & -0.899 & 1 & 0 \\
0.141 & 0.833 & 0.639 & 1
\end{array}\right]
$$

Function afp_lu_upp will calculate upper triangular matrix U
afp_lu_upp $(A)=\left[\begin{array}{ccccc}0.918 & 0.362 & 0.148 & 0.829 & 0.614 \\ 0 & 0.200 & -0.054 & -0.444 & 0.260 \\ 0 & 0 & 0.771 & -1.096 & 0.529 \\ 0 & 0 & 0 & 1.264 & -0.39\end{array}\right]$
And finally, function afp_lu_piv will return the pivot vector of the LU decomposition $\operatorname{afp} _$lu_piv $(A)=\left[\begin{array}{l}0 \\ 1 \\ 2 \\ 3\end{array}\right]$

