LU decomposition using GPU and OpenCL

In this example, we will create a random 4×5 matrix using uniform distribution and calculate its LU decomposition matrix. The calculation will be achieved by using the GPU card and OpenCL with a group of MatDeck functions that incorporate ArrayFire functionalities.

First, we will set the environment to use the GPU for calculations. Using the function, afp_supported_backends, a list of all supported backends that can be used for calculations will be produced. In our case, calculations can be made on the CPU, using OpenCL or CUDA framework.
afp_supported_backends ()$=\left[\begin{array}{c}\text { "cpu" } \\ \text { "opencl" } \\ \text { "cuda" }\end{array}\right]$
Default environment for calculations is the CPU. We can change the current environment with the function, afp_set_backend, and check which environment is currently in use with the afp_backend function.

$$
\begin{aligned}
& \text { afp_set_backend }(\text { "opencl" })=\text { true } \\
& \text { afp_backend }()=\text { "opencl" }
\end{aligned}
$$

In each environment, there can be several devices which support calculations within it. To check the number of devices which support calculations in the current environment, use the function, afp_get_device_count, and the functions afp_get_device and afp_set_device to check/change current device.

$$
\begin{aligned}
& \text { afp_get_device_count }()=3 \\
& \text { afp_get_device }()=1 \\
& \text { afp_set_device }(1)=\text { true }
\end{aligned}
$$

To display information about currently selected devices, use the function afp_device_info
\square
Finally, we have set OpenCL as a calculation backend and set the device with number 1 - integrated Intel graphic card as a device on which we will do all calculations.

Let's create a uniformly random 4×5 matrix with real values.
A:=afp_randu(4,5, "real")

We can print variable A to check that the input matrix is generated.

$$
A=\left[\begin{array}{lllll}
0.614 & 0.663 & 0.903 & 0.943 & 0.454 \\
0.736 & 0.231 & 0.370 & 0.785 & 0.842 \\
0.839 & 0.586 & 0.709 & 0.987 & 0.722 \\
0.252 & 0.623 & 0.49 & 0.113 & 0.328
\end{array}\right]
$$

Now we can do LU decomposition calculations on matrixA and place the resulting vector in variable B.
Resulting vector contains lower triangle matrix L, upper triangle matrix U and pivot vector.

$$
\begin{aligned}
& B:=\operatorname{afp} _\mathrm{lu}(A) \\
& B=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0.300 & 1 & 0 & 0 \\
0.732 & 0.523 & 1 & 0 \\
0.877 & -0.633 & -0.319 & 1
\end{array}\right]\left[\begin{array}{ccccc}
0.839 & 0.586 & 0.709 & 0.987 & 0.722 \\
0 & 0.447 & 0.277 & -0.183 & 0.111 \\
0 & 0 & 0.239 & 0.316 & -0.133 \\
0 & 0 & 0 & -0.096 & 0.236
\end{array}\right] \ldots . .
\end{aligned}
$$

There are separate functions for every member of the resulting vector.
Function afp_lu_low will calculate the lower triangle matrix L
afp _lu_low $(A)=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0.300 & 1 & 0 & 0 \\ 0.732 & 0.523 & 1 & 0 \\ 0.877 & -0.633 & -0.319 & 1\end{array}\right]$

Function afp_lu_upp will calculate the upper triangular matrix U
afp_lu_upp $(A)=\left[\begin{array}{ccccc}0.839 & 0.586 & 0.709 & 0.987 & 0.722 \\ 0 & 0.447 & 0.277 & -0.183 & 0.111 \\ 0 & 0 & 0.239 & 0.316 & -0.133 \\ 0 & 0 & 0 & -0.096 & 0.236\end{array}\right]$
And finally, function afp_lu_piv will return the pivot vector of the LU decomposition
$\operatorname{afp} _$lu_piv $(A)=\left[\begin{array}{l}2 \\ 3 \\ 0 \\ 1\end{array}\right]$

