
LU decomposition using GPU and OpenCL
In this example, we will create a random 4x5 matrix using uniform distribution and calculate its LU
decomposition matrix. The calculation will be achieved by using the GPU card and OpenCL with a group of
MatDeck functions that incorporate ArrayFire functionalities.

First, we will set the environment to use the GPU for calculations. Using the function,
afp_supported_backends, a list of all supported backends that can be used for calculations will be
produced. In our case, calculations can be made on the CPU, using OpenCL or CUDA framework.

 = afp_supported_backends c d

 "cpu"
 "opencl"
 "cuda"

Default environment for calculations is the CPU. We can change the current environment with the function,
afp_set_backend, and check which environment is currently in use with the afp_backend function.

 = afp_set_backend c d "opencl" true

 = afp_backend c d "opencl"

In each environment, there can be several devices which support calculations within it. To check the number
of devices which support calculations in the current environment, use the function, afp_get_device_count,
and the functions afp_get_device and afp_set_device to check/change current device.

 = afp_get_device_count c d 3

 = afp_get_device c d 1

 = afp_set_device c d 1 true

To display information about currently selected devices, use the function afp_device_info

 = afp_device_info c d

 "Intel(R)_HD_Graphics_620"
 "OpenCL"

 "Intel(R) OpenCL"
 "2.1"

Finally, we have set OpenCL as a calculation backend and set the device with number 1 - integrated Intel
graphic card as a device on which we will do all calculations.

Let's create a uniformly random 4x5 matrix with real values.

 A := afp_randuc d 4 , 5 , "real"

We can print variable A to check that the input matrix is generated.

www.labdeck.com

 = A

 0.614 0.663 0.903 0.943 0.454
 0.736 0.231 0.370 0.785 0.842
 0.839 0.586 0.709 0.987 0.722
 0.252 0.623 0.49 0.113 0.328

Now we can do LU decomposition calculations on matrix A and place the resulting vector in variable B.
Resulting vector contains lower triangle matrix L, upper triangle matrix U and pivot vector.

 B := afp_luc d A

 = B

 1 0 0 0
 0.300 1 0 0
 0.732 0.523 1 0
 0.877 - 0.633 - 0.319 1

 0.839 0.586 0.709 0.987 0.722
 0 0.447 0.277 - 0.183 0.111
 0 0 0.239 0.316 - 0.133
 0 0 0 - 0.096 0.236

There are separate functions for every member of the resulting vector.
Function afp_lu_low will calculate the lower triangle matrix L

 = afp_lu_low c d A

 1 0 0 0
 0.300 1 0 0
 0.732 0.523 1 0
 0.877 - 0.633 - 0.319 1

Function afp_lu_upp will calculate the upper triangular matrix U

 = afp_lu_upp c d A

 0.839 0.586 0.709 0.987 0.722
 0 0.447 0.277 - 0.183 0.111
 0 0 0.239 0.316 - 0.133
 0 0 0 - 0.096 0.236

And finally, function afp_lu_piv will return the pivot vector of the LU decomposition

 = afp_lu_pivc d A

 2
 3
 0
 1

