QR decomposition using GPU and CUDA

In this example, we will create a random 4×5 matrix using uniform distribution and calculate its QR decomposition matrix. The calculation will be achieved using the Nvidia GPU card and CUDA with a group of MatDeck functions that incorporate ArrayFire functionalities.

First, we will set the environment to use the GPU for calculations. Using the function, afp_supported_backends, a list of all supported backends that can be used for calculations will be produced. In our case, calculations can be made on the CPU, using OpenCL or CUDA framework.
afp_supported_backends ()$=\left[\begin{array}{c}\text { "cpu" } \\ \text { "opencl" } \\ \text { "cuda" }\end{array}\right]$
Default environment for calculations is the CPU, we can change the current environment with the function, afp_set_backend, and check which environment is currently in use with the afp_backend function.

$$
\begin{aligned}
& \text { afp_set_backend }(\text { "cuda" })=\text { true } \\
& \text { afp_backend }()=\text { "cuda" }
\end{aligned}
$$

In each environment, there can be several devices which support the calculations within it. To check the number of devices which support calculations in the current environment, use the function, afp_get_device_count, and the functions afp_get_device and afp_set_device to check/change current device.

$$
\begin{aligned}
& \text { afp_get_device_count }()=1 \\
& \text { afp_get_device }()=0 \\
& \text { afp_set_device }(0)=\text { true }
\end{aligned}
$$

To display information about currently selected devices, use the function afp_device_info
\square
Finally, we have set CUDA as a calculation backend and set the device with number 0 - Nvidia GeForce GPU card with CUDA support as a device on which we will do all calculations.

Let's create a uniformly random 4×5 matrix with real values.

$$
\text { A:=afp_randu(} 4,5, \text { "real" })
$$

We can print variable A to check that the input matrix is generated.

$$
A=\left[\begin{array}{ccccc}
0.785 & 0.842 & 0.702 & 0.29 & 0.995 \\
0.987 & 0.722 & 0.747 & 0.523 & 0.615 \\
0.113 & 0.328 & 0.339 & 0.997 & 0.829 \\
0.454 & 0.964 & 0.688 & 0.753 & 0.87
\end{array}\right]
$$

Now we can do the QR decomposition calculations on matrixA and place the resulting vector in variable B.
Resulting vector contains the orthogonal matrix Q and the upper triangle matrix, R.

B	$:=\operatorname{afp} _q r(A)$
B	$\left.=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0.460 & 1 & 0 & 0 \\ 0.115 & 0.389 & 1 & 0 \\ 0.796 & 0.422 & -0.316 & 1\end{array}\right]\left[\begin{array}{ccccc}0.987 & 0.722 & 0.747 & 0.523 & 0.615 \\ 0 & 0.632 & 0.345 & 0.512 & 0.586 \\ 0 & 0 & 0.119 & 0.738 & 0.530 \\ 0 & 0 & 0 & -0.109 & 0.425\end{array}\right]\right]$

There are separate functions for every member of the resulting vector.
Function afp_qr_q will calculate the orthogonal matrix Q
$\operatorname{afp_ qr_ q}(A)=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0.460 & 1 & 0 & 0 \\ 0.115 & 0.389 & 1 & 0 \\ 0.796 & 0.422 & -0.316 & 1\end{array}\right]$
Function afp_qr_r will calculate the upper triangular matrix R
afp_qr_r(A) $=\left[\begin{array}{ccccc}0.987 & 0.722 & 0.747 & 0.523 & 0.615 \\ 0 & 0.632 & 0.345 & 0.512 & 0.586 \\ 0 & 0 & 0.119 & 0.738 & 0.530 \\ 0 & 0 & 0 & -0.109 & 0.425\end{array}\right]$

