
QR decomposition using GPU and CUDA
In this example, we will create a random 4x5 matrix using uniform distribution and calculate its QR
decomposition matrix. The calculation will be achieved using the Nvidia GPU card and CUDA with a group
of MatDeck functions that incorporate ArrayFire functionalities.

First, we will set the environment to use the GPU for calculations. Using the function,
afp_supported_backends, a list of all supported backends that can be used for calculations will be
produced. In our case, calculations can be made on the CPU, using OpenCL or CUDA framework.

 = afp_supported_backends c d

 "cpu"
 "opencl"
 "cuda"

Default environment for calculations is the CPU, we can change the current environment with the function,
afp_set_backend, and check which environment is currently in use with the afp_backend function.

 = afp_set_backend c d "cuda" true

 = afp_backend c d "cuda"

In each environment, there can be several devices which support the calculations within it. To check the
number of devices which support calculations in the current environment, use the function,
afp_get_device_count, and the functions afp_get_device and afp_set_device to check/change current
device.

 = afp_get_device_count c d 1

 = afp_get_device c d 0

 = afp_set_device c d 0 true

To display information about currently selected devices, use the function afp_device_info

 = afp_device_info c d

 "NVIDIA_GeForce_940MX"
 "CUDA"
 "v11.2"
 "5.0"

Finally, we have set CUDA as a calculation backend and set the device with number 0 - Nvidia GeForce
GPU card with CUDA support as a device on which we will do all calculations.

Let's create a uniformly random 4x5 matrix with real values.

 A := afp_randuc d 4 , 5 , "real"

We can print variable A to check that the input matrix is generated.

www.labdeck.com

 = A

 0.785 0.842 0.702 0.29 0.995
 0.987 0.722 0.747 0.523 0.615
 0.113 0.328 0.339 0.997 0.829
 0.454 0.964 0.688 0.753 0.87

Now we can do the QR decomposition calculations on matrix A and place the resulting vector in variable B.
Resulting vector contains the orthogonal matrix Q and the upper triangle matrix, R.

 B := afp_qr c d A

 = B

 1 0 0 0
 0.460 1 0 0
 0.115 0.389 1 0
 0.796 0.422 - 0.316 1

 0.987 0.722 0.747 0.523 0.615
 0 0.632 0.345 0.512 0.586
 0 0 0.119 0.738 0.530
 0 0 0 - 0.109 0.425

There are separate functions for every member of the resulting vector.
Function afp_qr_q will calculate the orthogonal matrix Q

 = afp_qr_q c d A

 1 0 0 0
 0.460 1 0 0
 0.115 0.389 1 0
 0.796 0.422 - 0.316 1

Function afp_qr_r will calculate the upper triangular matrix R

 = afp_qr_r c d A

 0.987 0.722 0.747 0.523 0.615
 0 0.632 0.345 0.512 0.586
 0 0 0.119 0.738 0.530
 0 0 0 - 0.109 0.425

