QR decomposition using GPU and OpenCL

In this example, we will create a random 4×5 matrix using uniform distribution and calculate its $Q R$ decomposition matrix. The calculation will be achieved using the GPU card and OpenCL with a group of MatDeck functions that incorporate ArrayFire functionalities.

First, we will set the environment to use the GPU for calculations. Using the function, afp_supported_backends, a list of all supported backends that can be used for calculations will be produced. In our case, calculations can be made on the CPU, using OpenCL or CUDA framework.
afp_supported_backends ()$=\left[\begin{array}{c}\text { "cpu" } \\ \text { "opencl" } \\ \text { "cuda" }\end{array}\right]$
Default environment for calculations is the CPU. We can change the current environment with the function, afp_set_backend, and check which environment is currently in use with the afp_backend function.

$$
\begin{aligned}
& \text { afp_set_backend }(\text { "opencl" })=\text { true } \\
& \text { afp_backend }()=\text { "opencl" }
\end{aligned}
$$

In each environment, there can be several devices which support calculations within it. To check the number of devices which support calculations in the current environment, use the function, afp_get_device_count, and the functions afp_get_device and afp_set_device to check/change current device.

```
afp_get_device_count( ) = 3
afp_get_device( ) = 1
afp_set_device(1) = true
```

To display information about currently selected devices, use the function afp_device_info

Finally, we have set the OpenCL as a calculation backend and set the device with number 1 - Intel CPU with OpenCL support as a device on which we will do all calculations.

Let's create a uniformly random 4×5 matrix with real values.

$$
A:=\text { afp_randu }(4,5, \text { "real" })
$$

We can print the variable A to check that the input matrix is generated.

$$
A=\left[\begin{array}{ccccc}
0.995 & 0.347 & 0.192 & 0.853 & 0.613 \\
0.615 & 0.005 & 0.647 & 0.225 & 0.902 \\
0.829 & 0.227 & 0.285 & 0.552 & 0.745 \\
0.87 & 0.386 & 0.4 & 0.082 & 0.37
\end{array}\right]
$$

Now, we can do the QR decomposition calculations on matrixA and place the resulting vector in variable B. Resulting vector contains the orthogonal matrix Q and upper triangle matrix R.
$B:=\operatorname{afp_ qr}(A)$
$B=\left[\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0.619 & 1 & 0 & 0 \\ 0.874 & -0.396 & 1 & 0 \\ 0.833 & 0.294 & -0.068 & 1\end{array}\right]\left[\begin{array}{ccccc}0.995 & 0.347 & 0.192 & 0.853 & 0.613 \\ 0 & -0.21 & 0.528 & -0.303 & 0.523 \\ 0 & 0 & 0.441 & -0.784 & 0.041 \\ 0 & 0 & 0 & -0.123 & 0.084\end{array}\right]\right]$

There are separate functions for every member of the resulting vector.
Function afp_qr_q will calculate the orthogonal matrix, Q
$\operatorname{afp_ qr_ q}(A)=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0.619 & 1 & 0 & 0 \\ 0.874 & -0.396 & 1 & 0 \\ 0.833 & 0.294 & -0.068 & 1\end{array}\right]$

Function afp_qr_r will calculate the upper triangular matrix, R
afp_qr_r(A) $=\left[\begin{array}{ccccc}0.995 & 0.347 & 0.192 & 0.853 & 0.613 \\ 0 & -0.21 & 0.528 & -0.303 & 0.523 \\ 0 & 0 & 0.441 & -0.784 & 0.041 \\ 0 & 0 & 0 & -0.123 & 0.084\end{array}\right]$

