
QR decomposition using GPU and OpenCL
In this example, we will create a random 4x5 matrix using uniform distribution and calculate its QR
decomposition matrix. The calculation will be achieved using the GPU card and OpenCL with a group of
MatDeck functions that incorporate ArrayFire functionalities.

First, we will set the environment to use the GPU for calculations. Using the function,
afp_supported_backends, a list of all supported backends that can be used for calculations will be
produced. In our case, calculations can be made on the CPU, using OpenCL or CUDA framework.

 = afp_supported_backends c d  

 "cpu"
 "opencl"
 "cuda"

Default environment for calculations is the CPU. We can change the current environment with the function,
afp_set_backend, and check which environment is currently in use with the afp_backend function. 

 = afp_set_backend c d "opencl"  true

  = afp_backend c d  "opencl"

In each environment, there can be several devices which support calculations within it. To check the number
of devices which support calculations in the current environment, use the function, afp_get_device_count,
and the functions afp_get_device and afp_set_device to check/change current device.

 = afp_get_device_count c d  3

  = afp_get_device c d  1

 = afp_set_device c d 1  true

To display information about currently selected devices, use the function afp_device_info

 = afp_device_info c d  

 "Intel(R)_HD_Graphics_620"
 "OpenCL"

 "Intel(R) OpenCL"
 "2.1"

Finally, we have set the OpenCL as a calculation backend and set the device with number 1 - Intel CPU with
OpenCL support as a device on which we will do all calculations.

Let's create a uniformly random 4x5 matrix with real values.

 A  :=  afp_randuc d 4 ,  5 ,  "real"

We can print the variable A to check that the input matrix is generated.

www.labdeck.com



    

 

 = A  

 0.995  0.347  0.192  0.853  0.613
 0.615  0.005  0.647  0.225  0.902
 0.829  0.227  0.285  0.552  0.745
 0.87  0.386  0.4  0.082  0.37

Now, we can do the QR decomposition calculations on matrix A and place the resulting vector in variable B.
Resulting vector contains the orthogonal matrix Q and upper triangle matrix R.

    
 
 B  :=  afp_qr c d A

    

 

 = B   

 1  0  0  0
 0.619  1  0  0
 0.874 - 0.396  1  0
 0.833  0.294 - 0.068  1

 

 0.995  0.347  0.192  0.853  0.613
 0 - 0.21  0.528 - 0.303  0.523
 0  0  0.441 - 0.784  0.041
 0  0  0 - 0.123  0.084

There are separate functions for every member of the resulting vector.
Function afp_qr_q will calculate the orthogonal matrix, Q

    

 

 = afp_qr_q c d A  

 1  0  0  0
 0.619  1  0  0
 0.874 - 0.396  1  0
 0.833  0.294 - 0.068  1

Function afp_qr_r will calculate the upper triangular matrix, R

    

 

 = afp_qr_r c d A  

 0.995  0.347  0.192  0.853  0.613
 0 - 0.21  0.528 - 0.303  0.523
 0  0  0.441 - 0.784  0.041
 0  0  0 - 0.123  0.084


