
SVD decomposition using CUDA
In this example, we will create a random 4x5 matrix using uniform distribution and calculate its SVD
decomposition matrix. The calculation will be achieved using the Nvidia GPU card and CUDA with a group
of MatDeck functions that incorporate ArrayFire functionalities.

First, we will set the environment to use the GPU for calculations. Using the function,
afp_supported_backends, a list of all supported backends that can be used for calculations will be
produced. In our case, calculations can be made on the CPU, using OpenCL or CUDA framework.

 = afp_supported_backends c d

 "cpu"
 "opencl"
 "cuda"

Default environment for calculations is the CPU, we can change the current environment with the function,
afp_set_backend, and check which environment is currently in use with the afp_backend function.

 = afp_set_backend c d "cuda" true

 = afp_backend c d "cuda"

In each environment, there can be several devices which support calculations within it. To check the number
of devices which support calculations in the current environment, use the function, afp_get_device_count,
and the functions afp_get_device and afp_set_device to check/change current device.

 = afp_get_device_count c d 1

 = afp_get_device c d 0

 = afp_set_device c d 0 true

To display information about currently selected devices, use the function afp_device_info

 = afp_device_info c d

 "NVIDIA_GeForce_940MX"
 "CUDA"
 "v11.2"
 "5.0"

Finally, we have set OpenCL as a calculation backend and set the device with number 0 - Nvidia GeForce
GPU with CUDA support as a device on which we will do all calculations.

Let's create a uniformly random 4x5 matrix with real values.

 A := afp_randuc d 4 , 5 , "real"

We can print the variable A to check that the input matrix is generated.

www.labdeck.com

 = A

 0.225 0.902 0.396 0.281 0.093
 0.552 0.745 0.140 0.626 0.28
 0.082 0.37 0.633 0.418 0.098
 0.613 0.163 0.430 0.71 0.956

Now, we can do SVD decomposition calculations on matrix A and place the resulting vector in variable B. R
Resulting vector contains unitary matrix U, non-zero diagonal elements as a sorted 1D vector S in
descending order and unitary matrix VT.

 B := afp_svd c d A

 = B

- 0.439 0.613 - 0.007 - 0.657
- 0.545 0.199 0.606 0.544
- 0.354 0.216 - 0.792 0.448
- 0.620 - 0.733 - 0.075 - 0.269

 2.014
 0.905
 0.523
 0.208

- 0.402 - 0.514 - 0.368 - 0.523 - 0.408
- 0.203 0.732 0.102 - 0.147 - 0.626
 0.425 0.268 - 0.863 - 0.012 0.038
 0.116 - 0.314 - 0.076 0.732 - 0.589
- 0.777 0.174 - 0.321 0.412 0.307

There are separate functions for every member of the resulting vector.
Function afp_svd_u will calculate the unitary matrix U

 = afp_svd_uc d A

- 0.439 0.613 - 0.007 - 0.657
- 0.545 0.199 0.606 0.544
- 0.354 0.216 - 0.792 0.448
- 0.620 - 0.733 - 0.075 - 0.269

Function afp_svd_v will calculate the unitary matrix V

 = afp_svd_vc d A

- 0.402 - 0.514 - 0.368 - 0.523 - 0.408
- 0.203 0.732 0.102 - 0.147 - 0.626
 0.425 0.268 - 0.863 - 0.012 0.038
 0.116 - 0.314 - 0.076 0.732 - 0.589
- 0.777 0.174 - 0.321 0.412 0.307

Finally, the function, afp_svd_s, will return non-zero diagonal elements as a sorted 1D vector S in
descending order

 = afp_svd_s c d A

 2.014
 0.905
 0.523
 0.208

