SVD decomposition using CUDA

In this example, we will create a random 4×5 matrix using uniform distribution and calculate its SVD decomposition matrix. The calculation will be achieved using the Nvidia GPU card and CUDA with a group of MatDeck functions that incorporate ArrayFire functionalities.

First, we will set the environment to use the GPU for calculations. Using the function, afp_supported_backends, a list of all supported backends that can be used for calculations will be produced. In our case, calculations can be made on the CPU, using OpenCL or CUDA framework.
afp_supported_backends ()$=\left[\begin{array}{c}\text { "cpu" } \\ \text { "opencl" } \\ \text { "cuda" }\end{array}\right]$
Default environment for calculations is the CPU, we can change the current environment with the function, afp_set_backend, and check which environment is currently in use with the afp_backend function.

$$
\begin{aligned}
& \text { afp_set_backend }(\text { "cuda" })=\text { true } \\
& \text { afp_backend }()=\text { "cuda" }
\end{aligned}
$$

In each environment, there can be several devices which support calculations within it. To check the number of devices which support calculations in the current environment, use the function, afp_get_device_count, and the functions afp_get_device and afp_set_device to check/change current device.

$$
\begin{aligned}
& \text { afp_get_device_count }()=1 \\
& \text { afp_get_device }()=0 \\
& \text { afp_set_device }(0)=\text { true }
\end{aligned}
$$

To display information about currently selected devices, use the function afp_device_info
\square
Finally, we have set OpenCL as a calculation backend and set the device with number 0 - Nvidia GeForce GPU with CUDA support as a device on which we will do all calculations.

Let's create a uniformly random 4×5 matrix with real values.

$$
A:=\text { afp_randu }(4,5, \text { "real" })
$$

We can print the variable A to check that the input matrix is generated.

$$
A=\left[\begin{array}{ccccc}
0.225 & 0.902 & 0.396 & 0.281 & 0.093 \\
0.552 & 0.745 & 0.140 & 0.626 & 0.28 \\
0.082 & 0.37 & 0.633 & 0.418 & 0.098 \\
0.613 & 0.163 & 0.430 & 0.71 & 0.956
\end{array}\right]
$$

Now, we can do SVD decomposition calculations on matrix A and place the resulting vector in variable B. R Resulting vector contains unitary matrix U, non-zero diagonal elements as a sorted 1D vector S in descending order and unitary matrix V^{\top}.

$$
\begin{aligned}
& \text { B:=afp_svd }(A) \\
& B=\left[\begin{array}{rrrr}
-0.439 & 0.613 & -0.007 & -0.657 \\
-0.545 & 0.199 & 0.606 & 0.544 \\
-0.354 & 0.216 & -0.792 & 0.448 \\
-0.620 & -0.733 & -0.075 & -0.269
\end{array}\right]\left[\begin{array}{l}
2.014 \\
0.905 \\
0.523 \\
0.208
\end{array}\right]\left[\begin{array}{rrrrr}
-0.402 & -0.514 & -0.368 & -0.523 & -0.408 \\
-0.203 & 0.732 & 0.102 & -0.147 & -0.626 \\
0.425 & 0.268 & -0.863 & -0.012 & 0.038 \\
0.116 & -0.314 & -0.076 & 0.732 & -0.589 \\
-0.777 & 0.174 & -0.321 & 0.412 & 0.307
\end{array}\right]
\end{aligned}
$$

There are separate functions for every member of the resulting vector.
Function afp_svd_u will calculate the unitary matrix U

$$
\text { afp_svd_u(A) }=\left[\begin{array}{cccc}
-0.439 & 0.613 & -0.007 & -0.657 \\
-0.545 & 0.199 & 0.606 & 0.544 \\
-0.354 & 0.216 & -0.792 & 0.448 \\
-0.620 & -0.733 & -0.075 & -0.269
\end{array}\right]
$$

Function afp_svd_v will calculate the unitary matrix V
afp_svd_v $(A)=\left[\begin{array}{rrrrr}-0.402 & -0.514 & -0.368 & -0.523 & -0.408 \\ -0.203 & 0.732 & 0.102 & -0.147 & -0.626 \\ 0.425 & 0.268 & -0.863 & -0.012 & 0.038 \\ 0.116 & -0.314 & -0.076 & 0.732 & -0.589 \\ -0.777 & 0.174 & -0.321 & 0.412 & 0.307\end{array}\right]$

Finally, the function, afp_svd_s, will return non-zero diagonal elements as a sorted 1D vector S in descending order
afp_svd_s $(\mathrm{A})=\left[\begin{array}{l}2.014 \\ 0.905 \\ 0.523 \\ 0.208\end{array}\right]$

