SVD decomposition using OpenCL

In this example, we will create the random 4×5 matrix using uniform distribution and calculate its SVD decomposition matrix. The calculation will be achieved using the GPU card and OpenCL with a group of MatDeck functions that incorporate ArrayFire functionalities.

First, we will set the environment to use the GPU for calculations. Using the function, afp_supported_backends, a list of all supported backends that can be used for calculations will be produced. In our case, calculations can be made on the CPU, using OpenCL or CUDA framework.
afp_supported_backends ()$=\left[\begin{array}{c}\text { "cpu" } \\ \text { "opencl" } \\ \text { "cuda" }\end{array}\right]$
Default environment for calculations is the CPU, we can change the current environment with the function, afp_set_backend, and check which environment is currently in use with the afp_backend function.

```
afp_set_backend("opencl") = true
afp_backend( ) = "opencl"
```

In each environment, there can be several devices which support calculations within it. To check the number of devices which support calculations in the current environment, use the function, afp_get_device_count, and the functions afp_get_device and afp_set_device to check/change current device.

```
afp_get_device_count( ) = 3
afp_get_device( ) = 1
afp_set_device(1) = true
```

To display information about currently selected devices, use the function afp_device_info

Finally, we have set the OpenCL as a calculation backend and set the device with number 1 - Intel CPU with OpenCL support as a device on which we will do all calculations.

Let's create a uniformly random 4×5 matrix with real values.

$$
A:=\text { afp_randu }(4,5, \text { "real" })
$$

We can print the variable A to check that the input matrix is generated.

$$
A=\left[\begin{array}{ccccc}
0.093 & 0.869 & 0.577 & 0.143 & 0.958 \\
0.28 & 0.424 & 0.87 & 0.467 & 0.230 \\
0.098 & 0.827 & 0.983 & 0.951 & 0.136 \\
0.956 & 0.898 & 0.568 & 0.561 & 0.915
\end{array}\right]
$$

Now, we can do the SVD decomposition calculations on matrixA and place the resulting vector in variable B. Resulting vector contains unitary matrix U, non-zero diagonal elements as a sorted 1D vector S in descending order and unitary matrix V^{\top}.

$$
\begin{aligned}
& B:=\operatorname{afp_ svd}(A) \\
& \left.B=\left[\begin{array}{rrrr}
-0.462 & -0.414 & -0.784 & -0.027 \\
-0.382 & 0.326 & 0.083 & -0.861 \\
-0.521 & 0.696 & -0.078 & 0.487 \\
-0.607 & -0.487 & 0.611 & 0.144
\end{array}\right]\left[\begin{array}{l}
2.758 \\
1.008 \\
0.622 \\
0.292
\end{array}\right]\left[\begin{array}{ccccc}
-0.283 & -0.558 & -0.528 & -0.392 & -0.42 \\
-0.342 & -0.083 & 0.448 & 0.478 & -0.668 \\
0.846 & -0.260 & -0.177 & 0.313 & -0.295 \\
-0.199 & 0.494 & -0.696 & 0.473 & -0.089 \\
-0.217 & -0.608 & -0.067 & 0.545 & 0.531
\end{array}\right]\right]
\end{aligned}
$$

There are separate functions for every member of the resulting vector.
Function afp_svd_u will calculate the unitary matrix U

$$
\text { afp_svd_u(A) }=\left[\begin{array}{cccc}
-0.462 & -0.414 & -0.784 & -0.027 \\
-0.382 & 0.326 & 0.083 & -0.861 \\
-0.521 & 0.696 & -0.078 & 0.487 \\
-0.607 & -0.487 & 0.611 & 0.144
\end{array}\right]
$$

Function afp_svd_v will calculate the unitary matrix V
afp_svd_v $(A)=\left[\begin{array}{ccccc}-0.283 & -0.558 & -0.528 & -0.392 & -0.42 \\ -0.342 & -0.083 & 0.448 & 0.478 & -0.668 \\ 0.846 & -0.260 & -0.177 & 0.313 & -0.295 \\ -0.199 & 0.494 & -0.696 & 0.473 & -0.089 \\ -0.217 & -0.608 & -0.067 & 0.545 & 0.531\end{array}\right]$

Finally, the function, afp_svd_s, will return non-zero diagonal elements as a sorted 1D vector S in descending order
afp_svd_s $(\mathrm{A})=\left[\begin{array}{l}2.758 \\ 1.008 \\ 0.622 \\ 0.292\end{array}\right]$

