Root Locus 2

Sketch the root locus of

$$
\begin{equation*}
K G H=\frac{64 k}{s(s+4) \cdot(s+16)} \tag{1}
\end{equation*}
$$

Solution:

In the equation above there are no zeros. The poles are at $s=0, s=-4, s=-16$. Branches of loci start at open-loop poles and terminate at open-loop zeros at infinity.

The root locus exists on the real axis between $s=0$ and $s=-4, s=-16$ and $s=-\infty$. The root locus exists on the same real axis when an odd number of poles and zeros are found to the right of the point.

The asymmetrical angles are

$$
\begin{gather*}
\alpha=\frac{(2 \mathrm{k}+1) \cdot 180^{\circ}}{\Sigma \mathrm{P}-\Sigma Z} \\
\alpha:=\frac{(2 \mathrm{k}+1) \cdot 180}{3} \\
\alpha=120 \mathrm{k}+60 \tag{2}
\end{gather*}
$$

$$
\begin{gathered}
k:=0 \\
\alpha:=\frac{(2 k+1) \cdot 180}{3} \\
\alpha=60 \\
\text { II } \quad \alpha:=\frac{(2 k+1) \cdot 180}{3} \\
\alpha=180
\end{gathered}
$$

$$
k:=2
$$

III

$$
\alpha:=\frac{(2 k+1) \cdot 180}{3}
$$

$$
\alpha=300
$$

The center of gravity is given by

$$
\begin{gather*}
\Sigma Z:=0 \quad \Sigma P:=3 \\
C G=\frac{\Sigma \text { Pvalues }-\Sigma Z \text { values }}{\Sigma P-\Sigma Z} \tag{3}\\
C G:=\frac{-16-4-0+0}{\Sigma P-\Sigma Z} \\
C G=-6.667
\end{gather*}
$$

The center of gravity gives the starting point for the asymptotic lines.
The breakaway point is given by

$$
\begin{equation*}
\frac{1}{S_{b}}=\frac{1}{16-S_{b}}+\frac{1}{4-S_{b}} \tag{4}
\end{equation*}
$$

or

$$
\left(16-S_{b}\right) \cdot\left(4-S_{b}\right)=S_{b} \cdot\left(4-S_{b}\right)+S_{b} \cdot\left(16-S_{b}\right)
$$

The approximate value of S_{b} is

$$
\text { nonlinsolve }\left(\left(16-S_{b}\right) \cdot\left(4-S_{b}\right)==S_{b} \cdot\left(4-S_{b}\right)+S_{b} \cdot\left(16-S_{b}\right), S_{b}\right)=\left[\begin{array}{ll}
1.859 & 11.474
\end{array}\right]
$$

$$
S_{b} \approx-1.86
$$

The breakaway angle from the real axis is $\pm 90^{\circ}$.

The maximum value of K for which the system is stable is found by substituting $s=j \varphi$,

$$
\begin{equation*}
\mathrm{KGH}(\mathrm{j} \varphi)=\frac{64 \mathrm{~K}}{\mathrm{j} \varphi(\mathrm{j} \varphi+4) \cdot(\mathrm{j} \varphi+16)} \tag{5}
\end{equation*}
$$

Setting $\mathrm{KGH}(\mathrm{j} \varphi)=-1$ we have

$$
\begin{equation*}
\frac{64 \mathrm{~K}}{\mathrm{j} \varphi(\mathrm{j} \varphi+4) \cdot(\mathrm{j} \varphi+16)}=-1 \tag{6}
\end{equation*}
$$

Solving for K

$$
\begin{equation*}
K=\frac{20 \varphi^{2}+j \varphi\left(\varphi^{2}-64\right)}{64} \tag{7}
\end{equation*}
$$

For K to be a real number $\varphi^{2}-64$ must be equal to zero.

$$
\varphi^{2}==64=\left[\varphi\left[\begin{array}{ll}
-8 & 8
\end{array}\right]\right]
$$

From equation (7), for $\varphi= \pm 8$, we get K

$$
\begin{gathered}
\varphi:=8 \\
K:=\frac{20 \cdot \varphi^{2}+\mathrm{j} \varphi\left(\varphi^{2}-64\right)}{64} \\
K=20
\end{gathered}
$$

The root locus of the system is shown in the figure below.

$$
\mathrm{KGH}=\frac{64 \mathrm{~K}}{\mathrm{~s}(\mathrm{~s}+4) \cdot(\mathrm{s}+16)}
$$

