System stability

Examine the stability of the system shown in the picture below.

Solution:

We shall first find the transfer function and the characteristic equation of the system.

$$
\begin{aligned}
& c:=\frac{P}{(q+5) \cdot(q+2) \cdot q} \cdot\left(r-\left(c+\frac{1}{5} \cdot x_{1}+\frac{1}{5} \cdot x_{2}\right)\right) \\
& \mathrm{X}_{1}=\mathrm{CS} \\
& x_{2} /(q+2)=x_{1} \\
& x_{2}=x_{1}(q+2)=c s(q+2)
\end{aligned}
$$

$$
\begin{aligned}
& M:=\frac{c}{r} \\
& M:=\frac{P}{q(q+5) \cdot(q+2)+\frac{1}{5} \cdot P\left(q^{2}+3 q+5\right)}
\end{aligned}
$$

The characteristic equation of the system is

$$
\begin{aligned}
& D_{q}:=q(q+5) \cdot(q+2)+\frac{1}{5} \cdot P\left(q^{2}+3 q+5\right) \\
& D_{q}=q^{3}+7 q^{2}+10 q+0.2 P q^{2}+0.6 P q+P
\end{aligned}
$$

Therefore the Routh array is:

$$
\begin{gathered}
a:=\left[\begin{array}{ccc}
q^{3} & 1 & 10+0.6 P \\
q^{2} & 7+0.2 P & P \\
q^{1} & B & 0 \\
q^{0} & P & 0
\end{array}\right] \\
B:=\frac{-1 \text { mat determinant }(\operatorname{subset}(a, 0,1,1,2))}{\operatorname{value} \text { at }(a, 1,1)} \\
B=\frac{0.1 P^{2}+5.2 P+70}{0.2 P+7}
\end{gathered}
$$

For the system to be stable all the elements of the second column must to be positive.

$$
\begin{aligned}
7+0.2 P>0 & =\left[\begin{array}{ll}
P & (-35, \text { inf })
\end{array}\right] \\
B>0 & =\left[\begin{array}{ll}
P & (-35, \text { inf })
\end{array}\right] \\
P>0 & =\left[\begin{array}{ll}
P & (0, \text { inf })
\end{array}\right]
\end{aligned}
$$

When $\mathbf{P} \boldsymbol{>} \mathbf{0}$ all the elements of the array are positive and the system is stable.

