Channel export

Find the displacement of an object between the fourth and sixth second from it's start, if the velocity of the object at time, t is

$$
v=\frac{t^{2}+1}{\left(t^{3}+3 t\right)^{2}}
$$

After calculating the displacement, export its value through the channel.
Solution:
We can calculate the displacement if we evaluate

$$
\begin{gathered}
v:=\left(t^{2}+1\right) /\left(t^{3}+3 t\right)^{2} \\
x:=\int_{4}^{6} g v d t \\
x=0.003
\end{gathered}
$$

The displacement of the object from time, $t=4$ to $t=6$ is 0.00296 . Now, we will export this value through channel.

Channel import

Find the average value of $\boldsymbol{y}\left(3 y^{2}-1\right)^{3}$ in the interval which's lower boundary is the value that we are going to import from the channel and the upper boundary is 1.2.

Solution:

The average value of a function , $f(x)$, in the region $[a, b]$ is given by:

$$
\text { Average }=\frac{\int_{a}^{b} g f(x) d x}{b-a}
$$

Let's first import the value from the channel to the lower boundary.

$$
a:=0
$$

Import the Channel object from which we have imported the value to variable, a

$$
\begin{gathered}
a=0.003 \quad b:=1.2 \\
v 1:=y\left(3 y^{2}-1\right)^{3} \\
\text { Average }:=\left(\int_{a}^{b} g v 1 d y\right) /(b-a) \\
\text { Average }=4.194
\end{gathered}
$$

