Acid base equilibria 1 Indicate the equilibrium equation and the constant expression for the auto-protolysis of liquid ammonia. If $K_{NH3} = 10^{-22}$, howmany molecules of ammonia are ionized in a single mole of ammonia? Assume the density of ammonia is 0.771 g/ml. ## Solution: Auto-proteolysis is the phenomenon whereby an ammonia molecule can donate a proton to another NH₃ molecule to form a positive and a negative charged species. The equation of the auto-protolysis can be written as $$NH_3 + NH_3 \longrightarrow NH_4^+ + NH_2^-$$ or $$2 NH_3 \longrightarrow NH_4^+ + NH_2^-$$ (i) To find the constant expression, consider the equilibrium constant expression for the reaction: $$K_1 = \frac{(NH_4^+) \cdot (NH_2^-)}{(NH_3)^2}$$ Note that the concentration of NH_3 in pure ammonia is always constant. By the analogy of the autoprotolysis of water (where the K_W expression is written (OH^-) (H_3O^+) , - without $(H_2O)^2$ in the denominator), the constant expression for the auto-protolysis of NH_3 is $$K_{NH3} = (NH_4^+) \cdot (NH_2^-)$$ (ii) To find the number of molecules of ammonia ionized in a single mole of ammonia, use the equation $$K_1 = \frac{\left(NH_4^+\right) \cdot \left(NH_2^-\right)}{\left(NH_3\right)^2}$$ Let x be the number of moles of ammonia ionized. Then the NH₃ remaining non-ionized is 1 - x moles. Since each 2 ammonia molecules must ionize to produce a single NH_4^+ and one NH_2^- , the number of NH_4^+ is equal to the number of $NH_2^- = x/2$. Let V be the volume of one mole of ammonia. The concentration of NH_4^+ and NH_2^- can be written as $(x/2)/V_1$, and the concentration of non-ionized NH_3^- $$K_{1} = \frac{\left(\frac{\frac{x}{2}}{V_{1}}\right) \cdot \left(\frac{\frac{x}{2}}{V_{1}}\right)}{\left(\frac{1-x}{V_{1}}\right)^{2}} = \frac{\frac{x^{2}}{4}}{\left(1-x\right)^{2}} \cdot \frac{\frac{1}{V_{1}^{2}}}{\frac{1}{V_{1}^{2}}} = \frac{x^{2}}{4\left(1-x\right)^{2}}$$ (iii) X, the number of moles of ionized ammonia, can be calculated if K_1 is known. To solve K_1 , consider a more general case of the equation $$K_1 = \frac{(NH_4^+) \cdot (NH_2^-)}{(NH_3)^2}$$ The numerator (NH $_4^+$) (NH $_2^-$) is the constant expression for the auto-protolysis of NH $_3$ and must always equal $K_{NH3} \cdot K_{NH3}$ and is given as 10^{-22} . To find $(NH_3)^2$, use the fact that the density of ammonia is 0.771 g/ml. The mole weight of ammonia is $$\frac{0.771 \text{ g}}{17.03 \text{ g/mol}} = 0.045 \text{ kg mol kg}^{-1}$$ and the density of ammonia is 0.0453 mol/ml = 45.3 mol / liter, so $(NH_3) = 45.3 \text{ M}$. Substitute these results in $$K_1 = \frac{\left(NH_4^+\right) \cdot \left(NH_2^-\right)}{\left(NH_3\right)^2}$$ $$K_1 := \frac{10^{-22}}{45.3^2}$$ $$K_1 = 4.873e-26$$ (iv) Substitute this value of K₁ into (iii) $$4.8731 \times 10^{-26} = \frac{x^2}{4 (1-x)^2}$$ (v) To simplify the problem, note that the dissociation of ammonia is very small and x << 1. Approximate $(1-x)^2$ as 1, then (v) becomes $$\frac{x^2}{4} == 4.873 \times 10^{-26}$$ (vi) Now solve to obtain $x = 4.42 \times 10^{-13}$. This is the number of moles of NH₃ that is ionized. To find the number of molecules, remember that 1 mole = 6.02×10^{23} molecules. $$x:=4.42 \cdot 10^{-13} \cdot mol$$ $y:=6.02 \cdot 10^{23} \cdot molecules/mol$ $X:=xy$ X = 266084000000.000 molecules mol mol⁻¹ So, 2.66 x 10¹¹ molecules of ammonia are ionized.