www.labdeck.com

Acid base equilibria 2

The ionization constant for NH₄OH is 1.8×10^{-5} . Calculate the concentration of OH⁻ ions in a 1.0 molar solution of NH₄OH.

Solution:

The ionization constant (K_b) is defined as the concentration of OH⁻ ions times the concentration of the conjugate acid ions of a given base divided by the concentration of an unionized base. For a base (BA),

$$K_{b} := \frac{(B^{-}) \cdot (A^{+})}{(BA)}$$

Where K_b is the ionized constant, (B⁻) is the concentration of ionized base ions, (A⁺) is the concentration of the conjugate acid, and (BA) is the concentration of the unionized base. The K_b for NH₄OH is stated as

$$K_{b} = \frac{(NH_{4}^{+}) \cdot (OH^{-})}{NH_{4}OH} = 1.8 \times 10^{-5}$$

When NH_4OH is ionized, one NH_4^+ ion is formed and one OH^- ion is formed,

 $NH_4OH \longrightarrow NH_4^+ + OH^-$

The concentrations of each ions are equal.

$$(NH_4^+)=(OH^-)$$

The concentration of the unionized base is decreased when ionization occurs. The new concentration is equal to the concentration of OH^- subtracted from the concentration of NH_4OH .

$$(NH_4OH) = 1.0 - (OH^{-})$$

Since (OH⁻) is small relative to 1.0, one may assume that 1.0 - (OH⁻) is approximately equal to 1.0.

Using the assumption and the fact that (ON⁻) = (NH₄⁺), K_b can be rewritten as

$$K_{b} = \frac{(OH^{-}) \cdot (OH^{-})}{1.0} = 1.8 \times 10^{-5}$$

Solution for (OH^{-}) :

$$\frac{(OH^{-}) \cdot (OH^{-})}{1.0} = 1.8 \times 10^{-5}$$
$$(OH^{-})^{2} = 1.8 \times 10^{-5}$$
$$(OH^{-}) = \sqrt[2]{1.8 \times 10^{-5}} = 4.2 \times 10^{-3}$$