Ethanol boils at 78.50 C . If 10 g of sucrose is dissolved in 150 g of ethanol, at what temperature will the solution boil?Assume $\mathrm{Kb}=1.20^{\circ} \mathrm{C} / \mathrm{M}$ for the alcohol.

Since sucrose is a nonvolatile solution and it is being dissolved in a solvent(ethanol), it will raise the boiling point of the solvent .The boiling point elevation can be found by using the equation:

$$
\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b}} \cdot \mathrm{M}
$$

$\Delta \mathrm{Tb}$ is the boiling point elevation. Kb is the elevation constant and M is the molality of the solution. Molality is the number of moles of solute per a kg of solvent. Therefore we must find the moles of solute.

$$
\text { Moles_of_solute }=\frac{\text { grams_solute }}{\text { molecular_wt_solute }}
$$

We know the grams_solute.

```
grams_solute:= 10
```

We can get the molecular formula using a MatDeck form and the common name of the element.

We can now use the Periodic table to find the molecular weight of sucrose

```
CWeight:=12.011
HWeight:=1.008
OWeight:=15.999
```

Now we have all the information to find the moles of solute.

```
molecular_wt_solute := CWeight · 12 + HWeight · 22 + OWeight · 11
```

molecular_wt_solute $=342.297$
Moles_of_solute : $=\frac{\text { grams_solute }}{\text { molecular_wt_solute }}$
Moles_of_solute $=0.029$

Now we find the Molality of the solution using the following equation.

$$
\text { Molality }=\frac{\text { Moles_of_solute }}{\text { Kilogram_of_solvent }}
$$

We have 150 g of solvent which is equivalent to 0.15 kg of solvent

```
Kilogram_of_solvent:= 0.15
Molality: \(=\frac{\text { Moles_of_solute }}{\text { Kilogram_of_solvent }}\)
Molality \(=0.195\)
```

We know the Molality of the solution and elevation constant, now we can find out the elevation of the boiling point.

```
K
M:= Molality
Elevation_of the_boiling_point:= K W }\cdot\textrm{M
Elevation_of_the_boiling_point =273.384 K
```

Now we add the the elevation of the boiling point to the original boiling point to figure out the boiling point of the solution.

Original_boiling_point:=78.5 ${ }^{\circ} \mathrm{C}$
Current_boiling_point:= Original_boiling_point+ Elevation_of_the_boiling_point Current_boiling_point $=351.884 \mathrm{~K}$

The boiling point of the new solution is $78.734^{\circ} \mathrm{C}$.

