www.labdeck.com

Ethanol boils at 78.5oC. If 10 g of sucrose is dissolved in 150 g of ethanol, at what temperature will the solution boil? Assume Kb = 1.20° C/M for the alcohol.

Since sucrose is a nonvolatile solution and it is being dissolved in a solvent (ethanol), it will raise the boiling point of the solvent .The boiling point elevation can be found by using the equation:

 $\Delta T_{b} = K_{b} \cdot M$

 Δ Tb is the boiling point elevation.Kb is the elevation constant and M is the molality of the solution. Molality is the number of moles of solute per a kg of solvent.Therefore we must find the moles of solute.

Moles_of_solute = <u>grams_solute</u> molecular_wt_solute

We know the grams_solute .

grams solute := 10

We can get the molecular formula using a MatDeck form and the common name of the element.

form25124 := CHEMICAL_INFO_Form("form25124")	
Chemical Tool	
SMILES String Molecular Image	
OC[C@H]10[C@H](O[C@]2(CO)0[C@H](CO)[C@@H](O)	ОН
Get by SMILES	Онолинон
IUPAC name or Common Name	JUN I
(2R,3R,4S,5S,6R)-2-[(2S,3S,4S,5R)-3,4-dihydroxy-2,5-	OTHER OF
Get by Name HOTT	н
C12H22O11	
Common Names	
·	
Molecular mass	
99.99	
tormula25124 := chemical_into_tormula(torm25124)	
formula25124 = "C12H22O11"	
We can now use the Periodic table to find the molecular weight of sucrose	

We can now use the Periodic table to find the molecular weight of sucrose

CWeight:= 12.011		
HWeight:= 1.008		
OWeight:= 15.999		

Now we have all the information to find the moles of solute.

```
molecular_wt_solute := CWeight · 12 + HWeight · 22 + OWeight · 11
molecular_wt_solute = 342.297
Moles_of_solute := grams_solute
molecular_wt_solute
Moles_of_solute = 0.029
```

Now we find the Molality of the solution using the following equation.

Molality = <u>Moles_of_solute</u> Kilogram of solvent

We have 150 g of solvent which is equivalent to 0.15 kg of solvent

```
Kilogram_of_solvent:=0.15
Molality:=<u>Moles_of_solute</u>
Kilogram_of_solvent
Molality = 0.195
```

We know the Molality of the solution and elevation constant, now we can find out the elevation of the boiling point.

 K_b := 1.2 °C M:= Molality Elevation_of_the_boiling_point:= $K_b \cdot M$ Elevation_of_the_boiling_point = 273.384 K

Now we add the the elevation of the boiling point to the original boiling point to figure out the boiling point of the solution.

Original_boiling_point:=78.5 °C Current_boiling_point:=Original_boiling_point+Elevation_of_the_boiling_point Current_boiling_point = 351.884 K

The boiling point of the new solution is 78.734°C.