What is the hydrogen ion concentration of a buffer solution that is 0.05 M in acetic acid and 0.1 M in sodium acetate.(The K_{a} for acetic acid is $1.8 \times 10-5$)

Acetic acid ionizes and sodium acetate completely dissociates.

$$
\begin{aligned}
& \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \rightarrow \mathrm{H}^{+}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-} \\
& \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \rightarrow \mathrm{Na}^{+}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}
\end{aligned}
$$

The solution is a buffer solution since it is composed of a weak acid and a salt of the weak acid. The hydrogen ion concentration of such a buffer is calculated using the following.

$$
\mathrm{K}_{\mathrm{a}}==\frac{\left(\mathrm{H}^{\text {positive }}\right) \cdot\left(\mathrm{A}^{\text {negative }}\right)}{\mathrm{HA}}
$$

(A-) is the concentration of the salt of the acid and (HA) is the concentration of the Acid.We also know that the K_{a} is $1.8 \times 10-5$.

$$
\begin{aligned}
& A^{\text {negative }}:=0.1 \\
& H A:=0.05 \\
& K_{a}:=1.8 \cdot 10^{-5} \\
& \text { linsolve }\left(K_{a}==\frac{\left(H^{\text {positive }}\right) \cdot\left(\mathrm{A}^{\text {negative }}\right)}{H A}, H^{\text {positive }}\right)=9 \mathrm{e}-06
\end{aligned}
$$

We now know the hydrogen ion concentration which is $9 \times 10-6 \mathrm{M}$.

