Problem: HBr has a molecular weight of 81 while CH_{4} has a molecular weight of $16 . \mathrm{HBr}$ effuses through a opening at $4 \mathrm{ml} / \mathrm{sec}$. at what rate will the CH_{4} effuse through the same opening.

The speed of effusion of gases is inversely proportional to the square root of their molecular weight.

$$
\frac{\text { rate }_{A}}{\text { rate }_{B}}=\frac{\sqrt[2]{M_{B}}}{\sqrt[2]{M_{A}}}
$$

In this case rate ${ }_{\mathrm{A}}$ is HBr and rate $_{\mathrm{B}}$ is CH_{4}. Therefore to find rate ${ }_{\mathrm{CH} 4}$, we will find rate ${ }_{\mathrm{B}}$. We know the following information from the problem.

$$
\begin{aligned}
& \operatorname{rate}_{A}:=4 \\
& M_{A}:=81 \\
& M_{B}:=16
\end{aligned}
$$

Therefore,

$$
\text { nonlinsolve }\left(\frac{\text { rate }_{A}}{\text { rate }_{B}}==\frac{\sqrt[2]{M_{B}}}{\sqrt[2]{M_{A}}}, \text { rate }_{B}\right)=9
$$

And the rate of effusion is $9 \mathrm{ml} / \mathrm{sec}$.

