Normal (Gaussian) distribution

Suppose scores on an IQ test are normally distributed. If the test has a mean of 100 points and a standard deviation of 10 points, what is the probability that a person who takes the test will score between 90 and 110 points?

Solution:

We want to know the probability that the test score falls between 90 and 110 . We will find the solution for this problem if we realize the following:

$$
\mathrm{P}(90<\mathrm{X}<110)=\mathrm{P}(\mathrm{X}<110)-\mathrm{P}(\mathrm{X}<90)
$$

We will compute the probability on the right side of the equation. Lets mark $P(X<110)$ with variable a and $P(X<90)$ with variable \mathbf{b}.

Upper boundary

Lower boundary

Mean

Standard deviation

$$
\begin{gathered}
\mathrm{P}(\mathrm{X}<110) \\
\mathrm{a}:=\operatorname{normaldist}(\mathrm{U}, \mu, \rho)
\end{gathered}
$$

$$
\mathrm{a}=0.841
$$

$$
\begin{gathered}
\mathrm{P}(\mathrm{X}<90) \\
\mathrm{b}:=\operatorname{normaldist}(\mathrm{V}, \mu, \rho)
\end{gathered}
$$

$$
b=0.159
$$

$$
\begin{gathered}
P(90<X<110) \\
P:=a-b \\
P=0.683
\end{gathered}
$$

About 68.3% of the test scores will fall between 90 and 110 point on IQ test.

