Filtering of ECG signal with DC bias

The following example represents how the ECG signal is recorded and how it can be displayed and manipulated in order to remove the DC bias and any high frequency noise in an .xls file .
a:= excel read("ECG.xlsx", "Sheet 1", "A1:A100", false) Read data from .xlsx file
Fs:=125 Hz, sampling frequency
$\mathrm{N}:=\operatorname{size}(\mathrm{a}) \quad$ Length of signal
Dt: $=\operatorname{curve} 2 \mathrm{~d}(\mathrm{x}, 0,(\mathrm{~N}-1) / \mathrm{Fs}, \mathrm{N})$ Time axis
$\mathrm{dt}:=\operatorname{col} 2 \mathrm{vec}(\mathrm{Dt}, 0)$
Mat:= join mat cols(dt , a) Graph of ECG in time domain

The next thing is to process the signal with a simple DC blocking IIR filter with the following transfer function:

$$
H(z)=(z-1) /(z-p) .
$$

We can also show the spectrum of the input signal a.

$$
\begin{aligned}
& \mathrm{y}:=\mathrm{fft1}(\mathrm{a}) \quad \text { Spectrum of the input ECG signal } \\
& \mathrm{y} 11:=|\mathrm{y}| \quad \text { Amplitude spectrum of the input ECG signal } \\
& \mathrm{f}:=\text { curve } 2 \mathrm{~d}(\mathrm{x}, 0,(\mathrm{~N}-1) /(\mathrm{N} / \mathrm{Fs}), \mathrm{N}) \quad \text { Frequency axis } \\
& \mathrm{ft}:=\operatorname{col} 2 \mathrm{vec}(\mathrm{f}, 0) \\
& \text { Mat1 }:=\text { join mat cols }(\mathrm{ft}, \mathrm{y} 11) \quad \text { Graph of the amplitude spectrum of ECG signal }
\end{aligned}
$$

The filtering can be performed using a code to implement the simple IIR filter.

```
aout:= DCfilt(a) Filter the input ECG signal using function DCfilt()
    DCfilt(vec)
\{
    sz:=size(vec)
    2 xprev:=0.0
    3 yprev:=0.0
    pole:=0.9
    Matr:= vector create (sz , false , 0)
    for \((\mathrm{i}:=0, \mathrm{i}<\mathrm{sz}, \mathrm{i}+=1\) )
    \{ 1 temp:= vec[i]
    temp1:=(temp-xprev) + yprev • pole
        Matr[i] = temp1
        xprev= temp
        yprev= temp1
    \}
    7
    return(Matr)
\}
```

We can see the filtered signal and its spectrum.

Mat2 : = join mat cols(dt , aout) Graph of the filtered ECG signal
Filtered ECG signal

yout:=fft1 (aout) Spectrum of the filtered ECG signal
y1out:=|yout| Amplitude spectrum of the filtered ECG signal
Mat3 $:=$ join mat cols($\mathrm{ft}, \mathrm{y} 1 \mathrm{out}$) Graph of the amplitude spectrum of the filtered ECG signal

Spectrum of the filtered ECG signal

