
IIR filter implementation
IIR filters are used in many digital signal processing applications despite the fact they do not have a
linear phase. The main advantage compared to FIR filters is in the fact to have a smaller number of
coefficients to achieve the same filtering performance in the frequency domain. IIR filters can be
represented using the difference equation, and the corresponding transfer function in the z domain.

 H () z =
 b 0 + b 1 z

- 1
 + ... + b N z

- N

 1 + a 1 z
- 1

 + ... + a N z
- N

 y () n = ∑
=

 a b b i x () n - i
 0

 N

 i

 - ∑
=

 a b a i y () n - i
 1

 N

 i

Based on these two equations we define the two implementations forms for IIR filter. These are the
direct form I, and the direct form II both transposed.

 A = [1 a 1 a 2 a 3 a 4]

 B = [b 0 b 1 b 2 b 3 b 4]

Filter design means that we need to determine the filter coefficients for arrays B and A in order to fulfill
the filtering requirements. We assume that the filter coefficients are obtained, for example by using the
fourth order Chebyshev II approximation. Coefficients are:
Numerator
b4 =9.733517399250140E-3
b3= 1.871580508766260E-2
b2 =2.484970675674230E-2
b1= 1.871580508766260E-2
b0= 9.733517399250140E-3Denominator
a4= 1.852704707109540E-1

www.labdeck.com

a3= -1.044283378662510E0
a2= 2.298169395109720E0
a1= -2.357408135427590E0
a0= 1.000000000000000E0

We define the vectors of coefficients using the values from above, in order to illustrate how the IIR filter
is used to perform the filtering of a signal.

 Hz, frequency
 f2 := 6000

 IIR filter order
 N := 4

 Time variable

 dt := ynodes c d x , 0 , 0.005 - Ts1 , 100

 Hz, frequency
 f1 := 1000

Length of the test signal

 NumSigPoints := size c d x

IIR filter numerator coefficients

 NumCoeff :=

 9.7335174
 18.715805

 24.849707
 18.715805
 9.7335174

 0.001

 IIR filter denominator coefficients

 DenomCoeff :=

 1.0
 -2.3574081

 2.2981694
 -1.0442834
 0.1852704

 Test signal, sum of two sinusoidals

 x := 5 sinc d 2 π f1 dt + 5 sinc d 2 π f2 dt

s, sampling period
 Ts1 := 1 / Fs

Hz, sampling frequency
 Fs := 20000

The test signal has been defined above, and we can call the IIR filtering function to attenuate the
sinusoidal component of the higher frequency. First, we must determine the roots of the denominator in
order to check whether the poles of the filter are within the unit circle, which imposes the stability of the IIR
filter. After that, the IIR filter is initialized and the test signal is filtered by using the function iirfilter() whose
arguments are signal and filter coefficients.

Filter the test signal using initialized filter

 y := iirfilter c d 0 , x , DenomCoeff , NumCoeff

 Initialize IIR filter of required order

 initiirfilterc d 0 , size c d DenomCoeff

Poles of the IIR filter

 = fabse f polroots c d coef2expr c d DenomCoeff

 0.536
 0.536
 0.803
 0.803

We can show the input signal, and filtered signal in the same graph. It is obvious that the sinusoidal of
higher frequency has been attenuated.

Graph of the input test signal

 graf1 := join mat cols c d dt , x

Graph of the output filtered signal

 graf1f := join mat cols c d dt , y

Analysis of the IIR filter

In a sequel we analyze the IIR filter in the frequency domain in order to see its performance. The filter
analysis means that we determine its frequency response, which can be visualized as an amplitude and
phase response. Sometimes, there it is needed to determine the phase delay and group delay.

The filter frequency response in the desired number of points is given in the next graph.

Frequency axis

 fre := ynodes c d z , 0 , 1 - 1 / 128 , 128

Amplitude response is absolute value of the frequency response

 Habs := fabs c d H1

Calculate frequency response of the filter

 H1 := iirfreqres c d DenomCoeff , NumCoeff , 128 , 1

Graph of the amplitude response

 graf2 := join mat cols c d fre Fs , Habs

Next, we determine the phase response of the filter.

Phase response of the filter

 graf3 := join mat cols c d fre Fs , contphase c d H1

In the next part we generate a function to calculate the group delay of an IIR filter. Here, we use the function
iirgroupdelay() made in script language within this document. MatDeck's function for the calculation of
group delay with the same purpose is iirgrpdelay(), it is used in the same manner.

 grpd := iirgroupdelayc d DenomCoeff , NumCoeff , 128

Graph of the group delay

 grpdgraf := join mat cols c d fre , grpd

In the same manner, the phase delay of the filter can be calculated. The phase delay is shown in the next
graph.

 phd := iirphasedelayc d DenomCoeff , NumCoeff , 128

Graph of the phase delay

 phdgraf := join mat cols c d fre , phd

 Code of the function to calculate phase delay

 iirphasedelayc d vec1 , vec2 , numpoints

{

}

 frres := iirfreqres c d vec1 , vec2 , numpoints , 1

 phres := contphase c d frres

 fr := vector create c d numpoints , 0 , 0

 mat := vector create c d numpoints , 0 , 0

 for c d i := 1 , i < numpoints , i += 1
{

}

 [] fr i = () 2 π i / numpoints
 [] phres i = 0 - [] phres i / [] fr i

1
2

 returnc d phres

1

2

3

4

5

6

7

Code of the function which calculates the group delay

 iirgroupdelayc d vec1 , vec2 , numpoints

{

}

 ve1 := vec1
 ve2 := vec2

 oa := size c d ve1 - 1

 ob := size c d ve2 - 1

 if c d oa < 0
{

}

 ve1 = 1
 oa = 0

1
2

 if c d ob < 0
{

}

 ve2 = 1
 ob = 0

1
2

 oc := oa + ob

 c := convolutione f ve2 , flip c d conj c d ve1 , 1

 cr := vector create c d oc + 1 , 0 , 0

 for c d i := 0 , i <= oc , i += 1
{

}
 [] cr i = [] c i i1

 num := fft1nc d cr , 2 numpoints

 den := fft1nc d c , 2 numpoints

 Matr := vector create c d numpoints , 0 , 0

 for c d j := 0 , j < numpoints , j += 1
{

}

 [] Matr j = complexre c d [] num j / [] den j - oa1

 returnc d Matr

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

