IIR filter implementation

IIR filters are used in many digital signal processing applications despite the fact they do not have a linear phase. The main advantage compared to FIR filters is in the fact to have a smaller number of coefficients to achieve the same filtering performance in the frequency domain. IIR filters can be represented using the difference equation, and the corresponding transfer function in the z domain.

$$
\begin{aligned}
& y(n)=\sum_{i=0}^{N}\left(b_{i} x(n-i)\right)-\sum_{i=1}^{N}\left(a_{i} y(n-i)\right) \\
& H(z)=\frac{b_{0}+b_{1} z^{-1}+\ldots+b_{N} z^{-N}}{1+a_{1} z^{-1}+\ldots+a_{N} z^{-N}}
\end{aligned}
$$

Based on these two equations we define the two implementations forms for IIR filter. These are the direct form I, and the direct form II both transposed.

Filter design means that we need to determine the filter coefficients for arrays B and A in order to fulfill the filtering requirements. We assume that the filter coefficients are obtained, for example by using the fourth order Chebyshev II approximation. Coefficients are:
Numerator
b4 $=9.733517399250140 \mathrm{E}-3$
b3 $=1.871580508766260 \mathrm{E}-2$
b2 $=2.484970675674230 \mathrm{E}-2$
b1 $=1.871580508766260 \mathrm{E}-2$
b0 $=9.733517399250140 \mathrm{E}-3$ Denominator
$a 4=1.852704707109540 E-1$
a3= -1.044283378662510E0
az $=2.298169395109720 E 0$
at $=-2.357408135427590 E 0$
$a 0=1.000000000000000 E 0$
We define the vectors of coefficients using the values from above, in order to illustrate how the $\mathbb{I R}$ filter is used to perform the filtering of a signal.

$\mathrm{N}:=4 \quad$ IIR filter order

NumCoeff:=
9.7335174
18.715805
$24.849707 \quad 0.001$ IIR filter numerator coefficients
18.715805
9.7335174

-2.3574081
DenomCoeff:=
IIR filter denominator coefficients
-1.0442834
0.1852704

Fs:=20000 Hz, sampling frequency
Ts 1:=1/Fs s, sampling period
$\mathrm{dt}:=\operatorname{ynodes}(\mathrm{x}, 0,0.005-\mathrm{Ts} 1,100) \quad$ Time variable
$\mathrm{f} 1:=1000 \mathrm{~Hz}$, frequency
f2:=6000 Hz, frequency
$\mathrm{x}:=5 \sin (2 \pi \cdot \mathrm{f} 1 \mathrm{dt})+5 \sin (2 \pi \cdot \mathrm{f} 2 \mathrm{dt}) \quad$ Test signal, sum of two sinusoidal
NumSigPoints: $=\operatorname{size}(\mathrm{x}) \quad$ Length of the test signal
The test signal has been defined above, and we can call the $\mathbb{I R}$ filtering function to attenuate the sinusoidal component of the higher frequency. First, we must determine the roots of the denominator in order to check whether the poles of the filter are within the unit circle, which imposes the stability of the $I \mathbb{R}$ filter. After that, the $I \mathbb{R}$ filter is initialized and the test signal is filtered by using the function iirfilter() whose arguments are signal and filter coefficients.
tabs $($ polroots $($ coef2expr(DenomCoeff $)))=\left[\begin{array}{l}0.536 \\ 0.536 \\ 0.803 \\ 0.803\end{array}\right]$ Poles of the IIR filter initiirfilter(0 , size(DenomCoeff)) Initialize IIR filter of required order $y:=$ iirfilter($0, x$, DenomCoeff, NumCoeff) Filter the test signal using initialized filter

We can show the input signal, and filtered signal in the same graph. It is obvious that the sinusoidal of higher frequency has been attenuated.

graf1 := join mat cols $(\mathrm{dt}, \mathrm{x}) \quad$ Graph of the input test signal
graf1f:= join mat cols $(\mathrm{dt}, \mathrm{y}) \quad$ Graph of the output filtered signal Input, and output signals

Analysis of the IIR filter

In a sequel we analyze the IIR filter in the frequency domain in order to see its performance. The filter analysis means that we determine its frequency response, which can be visualized as an amplitude and phase response. Sometimes, there it is needed to determine the phase delay and group delay.

The filter frequency response in the desired number of points is given in the next graph.

H1:= iirfreqres(DenomCoeff , NumCoeff , 128, 1) Calculate frequency response of the filter Habs:=fabs $(\mathrm{H} 1) \quad$ Amplitude response is absolute value of the frequency response fre: $=\operatorname{ynodes}(z, 0,1-1 / 128,128) \quad$ Frequency axis graf2:= join mat cols(fre • Fs, Habs) Graph of the amplitude response

Next, we determine the phase response of the filter.
graf3:= join mat cols (fre $\cdot \mathrm{Fs}$, contphase $(\mathrm{H} 1)$) Phase response of the filter

In the next part we generate a function to calculate the group delay of an IIR filter. Here, we use the function iirgroupdelay() made in script language within this document. MatDeck's function for the calculation of group delay with the same purpose is iirgrpdelay(), it is used in the same manner.
grpd: = iirgroupdelay(DenomCoeff , NumCoeff , 128)
grpdgraf:= join mat cols(fre, grpd) Graph of the group delay

In the same manner, the phase delay of the filter can be calculated. The phase delay is shown in the next graph.
phd:= iirphasedelay(DenomCoeff , NumCoeff , 128)
phdgraf:= join mat cols (fre, phd) Graph of the phase delay
Phase delay

```
iirphasedelay(vec1, vec2, numpoints)
{
frres:= iirfreqres(vec1 , vec2 , numpoints , 1)
2 phres:=contphase(frres)
3fr:= vector create(numpoints,0,0)
4 mat:= vector create(numpoints,0,0)
    for(i:=1 , i<numpoints , i+=1)
    {
    5
        fr[i]=(2 | \pi) \cdot i/numpoints
        phres[i]=0-phres[i]/fr[i]
    }
6
return(phres)
}
```

iirgroupdelay(vec1, vec2, numpoints)
\{
1 ve1:=vec1
2 ve2:=vec2
3
oa:= size(ve1) - 1
ob:= size(ve2) - 1
if(oa<0)
\{
ve1 $=1$
$\mathrm{oa}=0$
\}
if $(\mathrm{ob}<0)$
$\begin{cases}1 & \text { ve2 }=1 \\ 2 & \text { ab }=0\end{cases}$
\}
$o c:=o a+o b$
$8 \quad c:=\operatorname{convolution}(v e 2$, flip $(\operatorname{conj}(v e 1), 1))$
Code of the function which calculates the group delay
$9 \mathrm{cr}:=$ vector create $(\mathrm{oc}+1,0,0)$
$\operatorname{for}(\mathrm{i}:=0, \mathrm{i}<=\mathrm{oc}, \mathrm{i}+=1$)
10
\{
$1 \mathrm{cr}[\mathrm{i}]=\mathrm{c}[\mathrm{i}] \cdot \mathrm{i}$
11
num :=fft1n(cr, 2 numpoints)
12
13
den:=fft1n(c, 2 numpoints)
Matr:= vector create(numpoints, 0,0)
for $(\mathrm{j}:=0, \mathrm{j}<$ numpoints, $\mathrm{j}+=1$)
\{
14
$\operatorname{Matr}[\mathrm{j}]=$ complexre $($ num [j] $/ \operatorname{den}[j])$ - oa
\}
15
return(Matr)

