
ICP DAS Devices and MatDeck
Unlike most other available software, MatDeck allows you to integrate and combine MatDeck's C++ style
script, Python, Drawings, Diagrams, Mathematical functions, Documentations, Tables, Custom Graphical
User Interfaces (MatDeck visual GUI designer) and other features in the same file - MatDeck document.
MatDeck and its numerous different features are all now available to ICP DAS series 2000 and 7000
devices.

Uses of GUIs for ICP DAS Devices

Using MatDeck, it is possible to set up multiple ICP DAS devices. The devices can be set via code
(Python or MatDeck C++ style script) or via a dedicated GUI for the ICP DAS devices. The settings GUI is
integrated together with the user code which in turn means the GUI is directly combined with the user’s
code. This unique MatDeck feature will reduce the amount of code needed to be written by a factor of 2 to
5. Additionally, you can avoid device setting code mistakes as well as simplifying the process of writing
code.

In MatDeck, there are two GUI forms for configuring ICP DAS USB Series 2000 devices, and six different
forms for configuring Series 7000 devices.

Configuration of ICP M-7026 Devices

In this example, we will illustrate two alternative ways of configuring the channels for ICP DAS M-7026
devices. MatDeck provides ICP DAS functions in the group Devices - ICP, and configuration can be done
directly in MatDeck's C++ style Script. Additionally, you can configure devices in Python. However, the
most effective and intuitive way for configuring the devices is by using MatDeck's GUI configuration.

This document is "a live document" and simultaneously executes commands, which is one of MatDeck's
unique advantages.

ICP M-7026 supports communication using either Modbus, or DCON protocol. In both cases, commands
are sent using appropriate MatDeck functions. The device, M-7026, is connected to the PC using the
RS485 interface via a ICP i-7561U device.

The first step is to access the device, M-7026, by opening the communications and getting the device
handle:

dev := icpcom_opendevice("COM4,9600,N,8,1")1

Here, the string contains information about the COM port, baud rate - 9600, and data format N,8,1. dev
contains the device's handle after opening. For further commands, the device handle is used. All
commands in DCON protocol are defined as strings according to the user manual for the device. For
example, command $AA7CiRrr is used to set the Type Code for a specific Analog Input channel of a
specified module. Here, $ is the delimiter character, AA is the address of the module to be set in
hexadecimal format (00 to FF), 7 is the command used to set the channel Type Code, Ci specifies the
Analog Input channel to be set, zero based (0-5), Rrr represents the Type Code to be used for the Analog
Input channel. The connected device has the address, 01. We want to set the channel 0 to the input range
-1V to +1V which is represented by the type code 0A:

icpcom_sendcmd(dev, "$017C0R0A")2

The input value can be read using the standard read function:

aivalue := icpcom_ai_read(dev, 1, 0, 6)3

www.labdeck.com

After, we finish by using the device it is necessary to close device and release the handle

icpcom_closedevice(dev)4

 = aivalue 0.001

GUIs for Configuration

Configuration using DCON protocol requires knowledge of DCON commands, device configuration tables
and programming to prepare all these scripts in a very intuitive manner. ICP devices can be easily set by
using the GUI form, icpcom_multifunction7000_form. All lines of script code, and more important all DCON
commands, are substituted by GUI settings. The same form can be used setup all the device pins.

 form := icpcom_multifunction7000_form c d 0 , "Form1"

 Configure function

 icpcom_multifunction7000_form_configure c d form

After ICP device is set, analog and digital input are read using standard read functions, and analog and
digital output are accessed using write functions:

dev1 := icpcom_opendevice("COM4,9600,N,8,1")
aivalue1 := icpcom_ai_read(dev1, 1, 0, 6)
icpcom_closedevice(dev1)

5
6
7

 = aivalue1 0.001

