
Image Processing in MatDeck
Image processing, a subbranch of digital signal processing, is the use of computer algorithms to perform
processing of a digital image. Digital images are defined over two dimensions, which makes all these
algorithms multidimensional. Image processing tasks implemented in MatDeck are the most often used
algorithms for image enhancement, and image manipulation.

Image Acquisition

In MatDeck, there is a function called image read() which is used to read an image from a graphics file.
This function works with common bitmap graphic files: .png, .gif, .jpg, .bmp and tif. The following line shows
how to read an image file given by name, inferring the format of the file from its contents and extension.
Through this example we use the standard test images, such as tulips.png below.

img := image read("tulips.png") 1

The image can be displayed in a MatDeck document using image widget() and embed widget():

 pic := image widget c d 0 , img

The function sets the size of widget. set size c d pic , 300 , 200

The second option for image acquisition is image capture() which uses the system camera to make digital
photography. In this case, the resolution of the image is determined via the camera device. When the
processing is done, the resulting image can be saved by using the function image write() providing the file
name.

image write("after.png", img)2

Image Creation

It is possible to convert any two dimensional matrix into a image using the function matrix2image(). There is
also a reverse function which can transform the image matrix into a regular matrix, which is usually done
when there is need to use regular matrix operations. We can check anytime if a matrix variable is an image
or not using is image() function. Besides that, it is possible to create an image from scratch by creating an
image with a given number of pixels, i.e. absolute resolution. In an image matrix it is possible to set the
pixels values manually. In a further segment, we illustrate simple image creation using these options.
Function to bgra() is used to combine RGB values and transparency into pixel.

imgc := image create(1, 3)
imgc := set value at(imgc, to bgra(0, 0, 255, 255), 0, 0)
imgc := set value at(imgc, to bgra(255, 0, 0, 255), 1, 0)

3
4
5

www.labdeck.com

 set size c d w1 , 150 , 150

 w1 := image widget c d 0 , imgc

 = image dpi c d img 72

 = image dpi c d img 90

 img := image set dpi c d img , 90

 = is image c d img true

Further, it is possible to set the relative resolution of an image by using the function image set dpi(), and
check current using image dpi() as illustrated above.

Basic Image Manipulations

MatDeck contains functions for basic operations with digital images. It is possible to extract each color
component into a separate matrix for further processing using the functions image red(), image green(),
image blue(). There is also a function which extracts the information regarding transparency, which is used
in .png images, image alpha().

Red := image red(img)
Green := image green(img)
Blue := image blue(img)
Transparency := image alpha(img)

8
9
10
11

Functions above take image as a matrix and return matrices of the same size containing a single color
channel. In MatDeck, there is a function which combines the four components into a single image bgra() as
a whole.

Green = matrix2image(floor(0.5 * Green))
img1 := image bgra(Blue, Green, Red, Transparency)

12
13

The image img contains the weakened Green component.

 pic1 := image widget c d 0 , img1

The function sets the size of widget.

 set size c d pic1 , 300 , 200

In the previous part, there are functions which are matrix based. In some situations, image processing can
be pixel based, for that reason there are MatDeck functions which are pixel based and extract color

imgc := set value at(imgc, to bgra(255, 255, 255, 255), 2, 0)
6
7

components from a single pixel. These functions are to red(), to green(), to blue() and to alpha(). Function to
bgra() is used to combine RGB values and transparency into a single pixel. Let us return to the image imgc
from above, which is a simple image of width one and height three. Recall, the pixel imgc[0] is red.

 = to greenc d [] imgc 0 0

 = to blue c d [] imgc 0 0

 = to alpha c d [] imgc 0 255

 = to red c d [] imgc 0 255

 Color Manipulation

In MatDeck there are built in functions for basic manipulation with color content and transparency within an
image. These functions, image red mul(), image green mul(), image blue mul(), image alpha mul(), allow
the multiplication of color components with a constant. If a multiplicative constant is greater than one, the
color content will be increased. Further, if the multiplicative constant is smaller than one, the color content
will be decreased. In a special case when the multiplicative constant is zero, the selected color component
is set to zero. Here are several examples.

// Red component of image Tulips
imgr := image blue mul(img, 0)
imgr := image green mul(img, 0)
 // Enchanced blue component in image Tulips
imgb := image blue mul(img, 2)

14
15
16
17
18

 set size c d picb , 300 , 200

 set size c d picr , 300 , 200

 picr := image widget c d 0 , imgr

 picb := image widget c d 0 , imgb

It is possible to experiment with transparency, alpha, in an image and in that way one can change the
shape of image.

imga := image alpha mul(img, 0.2)19

In order to see the effect of transparency, the canvas with a background color is used. Next, we change the
shape of the image. The shape of the image can be defined using loops which allows us to access pixels
of the image. For that purpose we use the functions image width() and image height().

wi := image width(img)
he := image height(img)
alpham := triangular(Transparency, "upp")
alpham := matrix2image(alpham)
imgs := image bgra(Blue, Green, Red, alpham)

20
21
22
23
24

 set size c d pica2 , 300 , 200

 set size c d pica1 , 300 , 200

 pica1 := image widget c d 0 , imga

 pica2 := image widget c d 0 , imgs

There is a function which creates the mirror image of a given image in MatDeck. The user can select the
orientation of the mirror image.

imgm := image mirror(imgs, true, false)
imgm1 := image mirror(imgs, false, true)

25
26

 set size c d pica4 , 300 , 200

 set size c d pica3 , 300 , 200

 pica3 := image widget c d 0 , imgm

 pica4 := image widget c d 0 , imgm1

Image fill function is used to enhance the color quality further.

imgf := image fill(img, to bgra(200, 100, 50, 255))
picm := image widget(0, imgf)
set size(picm, 100, 100)

27
28
29

Further Processing

We have presented the basic image operations including color manipulations on image matrix, or on pixel.
Further processing in MatDeck includes image scaling and rotation, and image filtering.

