
Configuring LabJack T Series Digital Inputs and
Outputs (DIO) using MatDeck
In this document, we will illustrate two alternative ways for configuring the DIO channels for LabJack T7 and
T4 devices.

MatDeck provides LabJack functions, and configuration can be done directly in MatDeck's C++ style
Script . Additionally, you can configure devices in Python.
However, the most effective and intuitive way for configuring the devices is by using MatDeck GUI
configuration.

This document is "alive" and simultaneously executes commands, which is one of MatDeck's unique
advantages.

Configuring PWM out at Selected Channel in MatDeck script

The pulse width modulation (PWM) is used to produce a signal for various applications. PWM out signal is
generated using the DIO extended features. In this example, we configure the LabJack T7 device to
produce a PWM output at DIO0(FIO0). These extended features are explained in detail in the following
links:
https://labjack.com/support/datasheets/t7/digital-io/extended-features
https://labjack.com/support/datasheets/t7/digital-io/extended-features/pwm-out
MatDeck supports LabJack functions which can be used directly inside MatDeck's script to configure
LabJack devices. In order to configure and use the device, the LabJack T7 device should be opened in the
document. The function ljdevice_open() returns the handle of the opened device:

dev := ljdevice_open("any", "any", "any")1

PWM Out at FIO0(DIO0) requires the clock source, thus the clock is first configured. There are three
parameters to select for the configuration: clock source, clock divisor and the roll value for the given clock.
There are three different clocks supported by T7, the most common is clock0 whose frequency is 80MHz.
The clock divisor can be any power of two from 1, 2, up to 256. In this example, we use a divisor value
equal to one. The roll value is determined according to the desired frequency of the PWM Out signal. For
example, if the desired frequency is 1kHz, the roll value is 80Hz/Divisor/1kHz=80000. Before all values are
written to the registers, the clock0 should be disabled.

//Disable clock0
ljdevice_write(dev,"DIO_EF_CLOCK0_ENABLE", 0)
//Setup Clock
ljdevice_write(dev,"DIO_EF_CLOCK0_DIVISOR", 1)//DIO_EF_CLOCK#_DIVISOR are
1,2,4,8,16,32,64,or 256 pre-counter to devide 80MHz
ljdevice_write(dev,"DIO_EF_CLOCK0_ROLL_VALUE", 80000)//Devide 80MHz by
80000 = 1000Hz

2
3
4

5

6

PWM out at FIO0 (DIO0) is configured by setting 0 at DIO0_EF_INDEX. A duty cycle is set by writing the
appropriate value at DIO0_EF_CONFIG_A. If the desired value of the duty cycle is 50%, then
DIO0_EF_CONFIG_A will be equal to half of the roll value, which is 40000.

//PWM Out at DIO0
ljdevice_write(dev,"DIO0_EF_ENABLE", 0)
//DIO Index valu 0 - PWM set
ljdevice_write(dev,"DIO0_EF_INDEX", 0)
//PWM duty cycle
ljdevice_write(dev,"DIO0_EF_CONFIG_A", 40000)

7
8
9
10
11
12

Congured Extended Features should be enabled, this is done by writing one to the ENABLE register:

www.labdeck.com

https://labjack.com/support/datasheets/t7/digital-io/extended-features
https://labjack.com/support/datasheets/t7/digital-io/extended-features/pwm-out

ljdevice_write(dev,"DIO_EF_CLOCK0_ENABLE", 1)
ljdevice_write(dev,"DIO0_EF_ENABLE", 1)
a := ljdevice_last_error("s") //Check for errors in configuration

13
14
15

 = a "LJ_SUCCESS"

At the end, the device should be closed.

ljdevice_close(dev)16

Configuring PWM Out by using MatDeck GUI Form
All of the above parameters can be set by using ljdioT7_config_form in a very intuitive manner. By using
this way, all lines of the script code are substituted by GUI settings. The same form can setup all device
pins.

 form := ljdioT7_config_form c d 0 , "Form_DIO "_101

 ljdioT7_config_form_configure c d form

The tab ,EF Clock Source, is used to set the clock source, clock divisor and the roll value for the selected
clock. DIO(0:7)-FIO(0:7) is used to set up the PWM output at the selected DIO 0 channel.

Adding Graph to Document

MatDeck provides 2D and 3D graphs which can be used to visualize data. The 2D graph is added from
the insert tab. However, before the graph is added, variables for visualization should be calculated. As
shown in the next example.

The PWM out at the DIO0 is read in the stream mode. The stream mode is set by writing in the appropriate
registers. The function ljdevice_stream_start() is used to prepare the device for reading, the user has to
specify scans per read, and scan rate. The function ljdevice_stream_read() is used to obtain data. If
multiple channels are streamed, all the data is stored in a single vector, thus reshape is used to separate
the channels.

// Configure Stream Mode
dev := ljdevice_open("any", "any", "any")
ljdevice_write(dev, "STREAM_TRIGGER_INDEX", 0)
ljdevice_write(dev, "STREAM_CLOCK_SOURCE", 0)
ljdevice_stream_start(dev, 10000, ["DIO0"; "STREAM_OUT0"], 10000)
pwm := ljdevice_stream_read(dev, 10000)
ljdevice_stream_stop(dev)

17
18
19
20
21
22
23

 Adding 2D graphs is very simple:
First check if the canvas is placed in the document where you want to show graph. If it is not there, go
to the Insert ribbon tab, click on the Canvas icon and move the cursor/mouse onto the document
where you want your canvas to be.
Then go to the Insert ribbon tab again, click on the Graph icon and place the cursor/mouse onto the
canvas where you want your graph to be. A graph without curve will appear.
Select the graph, right click on the mouse and choose Add Variable, choose X, Y axis variables for
the graph. Then on the selected graph, right click and select Properties. In the Graph properties form,
choose which variable is the x-axis and which one is the y-axis, fill in other properties and you will a
curve will appear on the graph. For more details see the MatDeck user manual, the page under the
title Insert Tab and subtitle Graph.

The device should be opened at the beginning of operation, and closed at the end. The device should be
reset to default settings to prevent unexpected outputs and inputs.

24

ljdevice_write(dev, "IO_CONFIG_SET_CURRENT_TO_DEFAULT", 1)
ljdevice_close(dev)

25
26

