
Optical communications system realized using
LabJack T7 and MatDeck - GUI Configuration
In this document, we will illustrate an example of an electronic circuit which also functions as a basic optical
communications system. The optical communication system is based on a light emitting diode (LED)
which is used as a transmitter, and a photo diode which is used as an optical receiver.

Schematics of the electronic circuits

The schematics of the described optical system are displayed below. It should be pointed out that the
schematics are created in MatDeck, which is a suitable platform for various professional drawings.

Logic
Input

GND

3.3V

IN1

OUT1

L-53P3CTSAL6100

BTS141

 Functionality
IN1 and OUT1 demonstrate IR communication with DSP filtering

Demo board schematic pin descriptions
IN1 - input for IR LED driver
OUT1 - output from IR sensor

Connection to ADC unit
IN1 is connected to the PWM output.
OUT1 is connected to Analog inputs 1

Parts:
For power driver is used BTS 141 which is logic level low side driver.
Photo-transistor L-53P3C NPN 5MM, 940nm
IR emitterTSAL6100 20◦ 940nm

www.labdeck.com

Configuration of LabJack T7 using GUI

The LabJack T7 device, shown above, is used in the experiment for several roles. First, the pulse width
modulation (PWM) is used to produce a input signal, denoted as IN1 on the schematics above. The IN1
signal is generated using the DIO extended features, PWM output at DIO0(FIO0) and a high-speed counter
at the DIO18 output. These extended features are explained in detail in the following links:
https://labjack.com/support/datasheets/t7/digital-io/extended-features
https://labjack.com/support/datasheets/t7/digital-io/extended-features/pwm-out
https://labjack.com/support/datasheets/t7/digital-io/extended-features/high-speed-counter
Second, the output signal is measured using the LabJack T7 device, stream reading at AIN0. Finally, the
noise in the communications is simulated using DAC0 so that a signal close to the output is added.

MatDeck supports LabJack functions which can be used directly inside the MatDeck script to configure
LabJack devices, and to generate and acquire signals from electronic circuits as described above.
However, MatDeck also provides Graphical User Interface (GUI) plug-ins for simple, effective
configuration. There are three plug-ins for three different groups of pins: ljdio_config_form() is used to
configure DIOs, ljaio_config_form() is used to configure AINs and ljdac_config_form() is used to configure
DACs. Here, details about the configuration of the selected features in this experiment are explained.

GUI for DIO Configuration

GUI form for DIO configuration can be started using ljdio_config_form(), as follows. The form is embedded
within the canvas and used for the configuration of DIOs.

f := ljdioT7_config_form(0, "Form0")1

PWM Out configuration in MatDeck script

PWM Out at FIO0(DIO0) requires the clock source, thus the clock is first configured. There are three
parameters to select for the configuration: the clock source, the clock divisor and the roll value for the given
clock. There are three different clocks supported by T7, the most common is clock0 whose frequency is
80MHz. The clock divisor can be any power of two from 1, 2, up to 256. In this example, we use divisor

https://labjack.com/support/datasheets/t7/digital-io/extended-features
https://labjack.com/support/datasheets/t7/digital-io/extended-features/pwm-out
https://labjack.com/support/datasheets/t7/digital-io/extended-features/high-speed-counter

ljdioT7_config_form_configure(f)2

value equal to one. The roll value is determined according to the desired frequency of the PWM Out signal.
For example, if the desired frequency is 1kHz, the roll value is 80Hz/Divisor/1kHz=80000. In the GUI, it is
possible to choose and set the desired frequency or desired roll value.

PWM out at FIO0 (DIO0) is configured by selecting the appropriate option from the drop down menu. In the
GUI, it is possible to set the desired value of the duty cycle directly to 50%.

Configuration of High Speed Counter

High speed counter at DIO18 will be used to check the obtained PWM out frequency. It is done by
selecting the appropriate option from the drop down menu at DIO18.

f1 := ljdac_config_form(0, "Form_DAC")3

GUI for AIN configuration

The signal at the output, OUT1 on the schematics, is read by AIN0 in the stream mode. The stream mode
is set by writing in the appropriate registers. Analog inputs have four values to set: resolution index,
settling time, range, and single-ended or differential reading. In the stream mode, resolution index and
settling time are set for all streamed analog inputs, while range and negative channel are configured
separately. MatDeck provides ljaio_config_form() which can be used to set all the parameters graphically,
which is very convenient for the user. In the next segment, there is an illustration on how to use the form for
AIN configuration. At the beginning, the form is evoked by calling ljaio_config_form(). The form is
embedded within the canvas and used for the configuration of AINs.

f2 := ljainT7_config_form(0, "Form AIN")5

ljdac_config_form_configure(f1)4

GUI for DAC Configuration

The interference is simulated using a analog output which is produced using DAC0. The output of DAC0 is
generated using the stream output, which is configured here. We use the GUI form for the DAC
configuration ljdac_config_form(), which is enabled in a similar manner as the previous form. The form is
embedded within the canvas and used for the configuration of DACs.

ljainT7_config_form_configure(f2)6

Use of Configured LabJack T7

In order to use the configuration and use the device, the LabJack T7 device should be opened in the
document:

dev := ljdevice_open("any", "any", "any")7

Enable Extended Features

Configured Extended Features are enabled, however, if some features are time sensitive they should be
restarted by performing the additional enable:

//Enable and run counter at DIO18
ljdevice_write(dev,"DIO18_EF_ENABLE", 1)
a := ljdevice_last_error("s") //Check for errors in configuration

8
9
10

 = a "LJ_SUCCESS"

Check PWM Out Frequency

The frequency of the PWM Out signal can be checked by reading the value of the counter after one
second.

11

Hz
 = counter 2158

Adding interference

The interference is simulated using a analog output which is produced using DAC0. The output of DAC0 is
generated using the stream output, which is configured using ljdack_config_form, and used here.

STREAM_OUT0_LOOP_VALUES := [0, 5, 0, 5, 0, 5, 0, 5, 0, 5]
// Write stream-out
ljdevice_write(dev, "STREAM_OUT0_LOOP_SIZE", 10)
ljdevice_awrite(dev, "STREAM_OUT0_BUFFER_F32", STREAM_OUT0_LOOP_VALUES)
ljdevice_write(dev, "STREAM_OUT0_SET_LOOP", 1)

16
17
18
19
20

Reading values in the stream mode

The function ljdevice_stream_start() is used to prepare the device for reading, the user has to specify
scans per read, and scan rate. The function ljdevice_stream_read() is used to obtain the data. If multiple
channels are streamed, all the data is stored in a single vector, thus reshape is used to separate the
channels.

ljdevice_stream_start(dev, 10000, ["DIO0"; "AIN0"; "STREAM_OUT0"], 10000)
pwm := ljdevice_stream_read(dev, 20000)
ljdevice_stream_stop(dev)
ch := mat_reshape(pwm, [size(pwm) / 2, 2])

21
22
23
24

Closing the T7 Device

Finally, at the end, all the extended features should be disabled and the device should be closed.

//Disable clock0, high speed counter, PWM out and close the device
ljdevice_write(dev,"DIO_EF_CLOCK0_ENABLE", 0)
ljdevice_write(dev,"DIO18_EF_ENABLE", 0)
ljdevice_write(dev,"DIO0_EF_ENABLE", 0)
ljdevice_close(dev)

25
26
27
28
29

 = pwm 20000 elements vector

Signal Processing and Visualization

The obtained signal is visualized using a MatDeck graph. It is evident from observing the graph that the
signal is corrupted with interference.

ttime := ynodes(x, 0, 9999 / 10000, 10000)
IN1 :=subset(ch, 0, 0, size(ch) / 2 -1, 0)
OUT1 :=subset(ch, 0, 1, size(ch) / 2 -1, 1)
graph := join_mat_cols(ttime, IN1)
graph1 := join_mat_cols(ttime, OUT1)

30
31
32
33
34

// Wait for one second
sleep(1000)
// Read the counter
counter := ljdevice_read(dev, "DIO18_EF_READ_A")

12
13
14
15

Signal Processing using MatDeck Digital Filter

It is evident from the time domain graph, that it is corrupted with high frequency interference. However, it is
also possible to check the amplitude spectrum of the signal using the MatDeck function, fft(). The
amplitude spectrum shows the frequency of the interference in Hz. The information is used to design the
filter in order to remove interference from the signal.

Amp_Spectrum := abs(fft1(OUT1)) / 10000
Fre := ynodes(x, 0, 9999, 10000)
Amp_Sgraph := join_mat_cols(Fre, Amp_Spectrum)

37
38
39

The idea is to use a simple low pass Butterworth filter of the fourth order, with the cutoff frequency equal to
2500Hz. In MatDeck, we can use the IIR form to design the aforementioned filter and to apply the filter to
the signal. In order to use the form, the user has to create the form using the function
f:=iirfilteringform(0,"form1"). Here, the first argument is the widget parent or 0, and the second argument is
the string form name. The function returns the identification of the widget form. The created IIR Filtering

graph_test := subset(graph1, 0, 0, 100, 1)
35
36

w1 :=iirfilteringform(0, "FormIIR2")40

At the end, we just have to visualize the time domain and amplitude spectrum of the filtered OUT1 signal.

OUT1_filtered :=iirfilteringresult(w1, OUT1)
Amp_Spectrum1 := abs(fft1(OUT1_filtered)) / 10000
Amp_Sgraph1 := join_mat_cols(Fre, Amp_Spectrum1)
Time_OUT1f := join_mat_cols(ttime, OUT1_filtered)
graph_test1 := subset(Time_OUT1f, 0, 0, 100, 1)

41
42
43
44
45

Form is placed in the Canvas at the position where the function embed_widget() is called with the
appropriate widget identity. As explained earlier, the IIR filtering form can be used to filter the OUT1 signal.
In order to perform the filtering, the Filter data check box has to be checked. The results are derived by
calling the functions iirfilteringresult(w1,OUT1), where f is the identification of the widget, x is the input
signal and y is the output signal.

