
Micro:bit measures temperature which is sent to
MatDeck and displayed in instrument widget

This example illustrates communications between MatDeck and micro:bit using a com port.The obtained
results are displayed in instrument widget.

The document here contains the micro:bit Python program. The user can flash .HEX files onto a micro:bit
directly from the document.They will need to highlight the whole Python block they would like to flash and
click Deploy. If the micro:bit Python block has already been deployed to the micro:bit, you will not need to
deploy it again to run it.The micro:bit should be connected to the PC. The receiver code is also in this
MatDeck document

The micro:bit’s processor contains a temperature sensor which can be used in your programs. It’s a useful
approximation of the temperature around the micro:bit.

Flush the following code to your micro:bit (select all lines and click Deploy button from programing
tab)

#py
from microbit import *

while True:
 x = temperature()
 print(x)
 display.show(Image.YES)
 sleep(250)
 display.show(Image.NO)
 sleep(250)

###

1
2
3
4
5
6
7
8
9
10
11
12

The temperature read from the micro:bit unit is displayed by the virtual instrument in the canvas below. The
instrument is added from Insert - Select Form.

It is related to the variable given in the code.

www.labdeck.com

 WGT2 := DigitmeterInstWidget c d "WGT2"

Temperature measured in Celsius

MatDeck can communicate and receive data from the micro:bit unit via com port. The micro Python code
given above will cause the micro:bit to send temperature data via a com port. The data can then be
displayed using Virtument. The required parameters for com port communications are:

COM3
Baud rate = 115200
Data = 8 bits
Parity = none
Stop = 1 bit

handle := com_open("COM3,115200,N,8,1")
t := timer_create(250)
Temp := 0
counter := 10
on_event(t,microbit_read())

13
14
15
16
17

 Here, we temperature sent from micro:bit.

microbit_read()
{
value := com_read(handle, 100)

if(size(value) == 4)
{
 valuestr := vec2str(value)
 Temp = to_number(mid(valuestr, 0,2))
 set_widget_value(WGT2, Temp)

}
counter -= 1
if(counter == 0)
{
com_close(handle)
timer_delete(t)

}
}

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

