Relativistics physics Lorentz transformation

What is the Lorenz contraction of a automobile traveling at 60 mph ? (60 mph is equivalent to $2682 \mathrm{~cm} / \mathrm{sec}$.)

Solution

Suppose we are given two frames of reference that are moving relative to one another with a velocity of v. If we are dealing with classical physics and want to relate the coordinates of an event occurring in the S-frame (x, y, z, t) to the coordinates of an event occurring in the S^{\prime}-frame ($x^{\prime}, y^{\prime}, z^{\prime}, t^{\prime}$), we use the Galilean transformation, or

$$
\begin{aligned}
& \mathrm{x}^{\prime}=\mathrm{x}-\mathrm{vt} \quad \text { (ff } \mathrm{v} \text { is in the } \mathrm{x} \text {-direction only) } \\
& \mathrm{y}^{\prime}=\mathrm{y} \\
& \mathrm{z}^{\prime}=\mathrm{z} \\
& \mathrm{t}^{\prime}=\mathrm{t}
\end{aligned}
$$

In relativistic physics, this transformation is invalid and must be replaced by the Lorentz transformation, or

$$
x^{\prime}=\frac{x-v t}{\sqrt[2]{1-v^{2} / c^{2}}}
$$

$$
\begin{gathered}
y^{\prime}=y \\
z^{\prime}=z \\
t-v \frac{x}{c^{2}} \\
\mathrm{t}^{\prime}=\frac{2}{\sqrt[2]{1-v^{2} / c^{2}}}
\end{gathered}
$$

Now, we may relate distance measured in (S')s to the distance measured in (S)s. Let us imagine the measurement of distance which is parallel to the x^{\prime}-axis in the S^{\prime} frame. In order to measure the length of a rod in S, we must locate both ends of the rod $\left(x_{1}, x_{2}\right)$ at the same time $\left(t_{1}=t_{2}\right)$ in S. The length in S^{\prime} is

$$
\begin{align*}
& x_{2}{ }^{\prime}-x_{1}{ }^{\prime}=\frac{\left(x_{2}-x_{1}\right)-v\left(t_{2}-t_{1}\right)}{\sqrt[2]{1-v^{2} / c^{2}}} \\
& x_{2}{ }^{\prime}-x_{1}{ }^{\prime}=\frac{\left(x_{2}-x_{1}\right)}{\sqrt[2]{1-v^{2} / c^{2}}} \\
& x_{2}-x_{1}=\left(x_{2}{ }^{\prime}-x_{1}{ }^{\prime}\right) \cdot \sqrt[2]{1-v^{2} / c^{2}} \tag{1}\\
& \sqrt[2]{1-v^{2} / c^{2}}<1 \square x_{2}-x_{1}<x_{2}-x_{1}{ }^{\prime}
\end{align*}
$$

The observer in S measures a smaller rod length (which is contracted) than the observer in the rod's rest frame S^{\prime}. We calculate the length of the car in $\mathrm{S},\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)$.

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{r}}:=26822.4 \mathrm{~mm} / \mathrm{s} \\
& \left(\frac{\mathrm{~V}_{r}}{c}\right)^{2}=8.004 \mathrm{e}-9 \mathrm{~mm}^{2} \mathrm{~s}^{-2} \mathrm{~s}^{2} \mathrm{~m}^{-2}
\end{aligned}
$$

When x is much less than 1 ,

$$
\begin{aligned}
& \sqrt[2]{1-x}=1-\frac{1}{2} \cdot x \quad \text { approxir } \\
& \sqrt{1-\left(\frac{V_{r}}{c}\right)^{2}}=1-(4.0 \mathrm{e}-15) \\
& x_{2}-x_{1}=\left(x_{2}{ }^{\prime}-x_{1}^{\prime}\right) \cdot(1-4.0 \mathrm{e}-15)
\end{aligned}
$$

the diameter of an atom is about $10^{-8} \mathrm{~cm}$, the diameter of a nucleus is about $10^{-12} \mathrm{~cm}$ and the size of the electron is about $10^{-13} \mathrm{~cm}$, this contraction is clearly negligible. Again we see that the difference between relativistic and classical physics is not important for the velocities we are normally concerned with.

