
Implementation of Naive Bayes in MatDeck
The Naive Bayes algorithm is an effective algorithm and it is one the very first methods used in
classification and machine learning implemented in MatDeck. The Naive Bayes algorithm is a method that
uses the probabilities of all attributes and features belonging to each class to make an informed decision
about the classification. The Naive Bayes simplifies the calculation of probabilities by assuming that the
probability of each attribute in a given class is independent of all other attributes. This assumption results in
a fast and all round effective method.

Training stage

In the next segment, we give a standard example of sex classification used by Wikipedia to mathematically
illustrate the Naive Bayes approach and its benefits. In this problem, the program must classify whether a
given person is a male or a female based on given features. These features (attributes) are height, weight
and foot size.

The starting point for this classification is using training set which consists of a given set of measured
attributes and classes. An example of a training set is given below. In this example there are two classes,
male and female, and three main attributes which are height, weight and foot size. We define all the
required variables in this manner.

 TrainingSet :=

 182 81.6 30 "male"
 180 86.2 28 "male"
 170 77.1 30 "male"
 180 74.8 25 "male"
 152 45.4 15 "female"
 168 68 20 "female"
 165 59 18 "female"

 number_class := 2

 number_attributes := 3

 s_class :=
 "female"
 "male"

Naive Bayes training function prepares the data for the Naive Bayes classification function. All attributes
are considered to be statistical processes in accordance to Gaussian distribution. The training process is
used to determine mean, and standard deviation for all attributes per class, and probability of each class.
These values are used to calculate all the probabilities which are necessary to make an informed decision.
The next line displays how the training function is called in MatDeck. After that, the result of the training
function is displayed.

 MM := naivebayesTc d TrainingSet , number_attributes , number_class , s_class

Below is a sample to be classified as male or female.

www.labdeck.com

 TestData := 170 65 30

Data obtained by training, mean and
 standard deviation per class,
and class probabilities

 = MM

 165 60.1 19 178 79.925 28.25

 8.337 9.248 2.915 4.690 4.371 2.046

 0.5
 0.5

Classification stage

In order to determine which class posterior is greater, in this case male or female, we have to calculate
probabilities based on mean, standard deviation, for all attributes per class. The greatest posterior
determines the class for the test data.

 = naivebayesC c d MM , number_attributes , number_class , s_class , TestData "male"

Script codes for Naive Bayes functions

Naive Bayes Training function

 naivebayesT(Train, N_a, N_c, c_in)
{

counter := vector create(N_c, false, 0)
VecM := vector create(N_c, true, 0)

 // Create a vector for every class, with dimension equal to the number of attributes
for(k := 0; k < N_c; k += 1)
{

VecM[k] = vector create(N_a, true, 0)
}

 // Classify training data, matrix Train, into classes
for(i := 0; i < rows(Train); i += 1)
{

for(j := 0; j < N_c; j += 1)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

{
ind := i * (N_a + 1) + N_a

 // If the row is a memeber of class j, update the counter per class
if(Train[ind] == c_in[j])
{

 // Put row into class
if(counter[j] == 0)
{

VecM[j] = subset(Train, i, 0, i, N_a - 1)
}
if(counter[j] > 0)
{

VecM[j] = join mat rows(VecM[j], subset(Train, i, 0, i, N_a - 1))
}
counter[j] = counter[j] + 1

}
}

}

Vec_mean := vector create(N_c, true, 0)
Vec_dev := vector create(N_c, true, 0)
N_samp := 0
 // Calculate mean and average per class
for(i := 0; i < N_c; i += 1)
{

Temp := VecM[i]
Vec_mean[i] = col average(Temp)
Vec_dev[i] = col deviation(Temp)
N_samp += counter[i]

}

counter = counter / N_samp

 // Prepare training data
Traindata := vector create(3, false, 0)
Traindata[0] = Vec_mean
Traindata[1] = Vec_dev
Traindata[2] = counter
return(Traindata)

}

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

Naive Bayes Classification function

 naivebayesC(Train_D, N_a, N_c, c_in, Data_in)
{

 // Adjust training data
Avg := Train_D[0]
Dev := Train_D[1]
p_c := Train_D[2]
p_p_c := vector create(N_c, false, 0)
evidence := 0
p_M := 0.0
M := 0

// Test the probability that a given data belongs to a certain class
for(i := 0; i < N_c; i += 1)
{

p_temp := p_c[i]

 // Caluclate the probabilities for all attributes
for(j := 0; j < N_a; j += 1)
{

p_temp = p_temp * normaldens(Data_in[j], Avg[i][j], Dev[i][j])
}

p_p_c[i] = p_temp
evidence += p_temp

 // Find the maximum probability per class, determine the class index M
if(p_temp > p_M)
{

p_M = p_temp
M = i

}
}
return(c_in[M])

}

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

